Important

The digital version of this manual (.pdf) is fully linked from the table of contents directly to the contents of the manual.

Click on any BOLD table of contents entry and that page will be selected automatically.

Table of Contents

2018 CHEVROLET LOW CAB FORWARD	0.01
INTRODUCTION	1.1
LCF MEDIUM DUYT V.I.N IDENTIFICATION	
CAUTIONARY NOTES	1.2
Electrical Sensitivity and Battery Relocation Warning	
All Fluids and Lubricants Caution	
Low Speed Applications for LCF Series Chassis	
Auxiliary Transmission Cooler Warning	
Transmission Temperature Warning Lamp	
Fuel Tank Caution	
Tapping into Engine Cooling System	
Brake Override Logic	
NO-START CONDITION – CLICKING OR BANGING FROM STARTER LCF Trucks Equipped with 5.2L (4HK1) Diesel Engines	1.3
INSTALLATION OF BODY AND SPECIAL EQUIPMENT Clearances	2.1
Engine	
Transmission	
Front and Center Propeller Shafts	
Rear Propeller Shaft	
Exhaust System	
Diesel Particulate Filter and Selective Catalytic Reduction (SCR) Restrictions	
Exhaust Clearances	
Exhaust system surface temperatures During Manual Regeneration	
2018 Chayrolat I CE	Povision: 11/20/2017

Rear Wheel Axle	
Other Clearances	
Body Installation	2.8
Mirrors	
Side Step Door Installation recommendations	
DPF/SCR Heat Shield Removal	
LCF 3500HD	2.12
Special Equipment on the Chassis	
Subframe Design and Mounting	
LCF 4500, 4500HD, 4500XD, 5500HD, 5500XD	2.13
Subframe Contour	
Prohibited Attachment Areas	2.15
Front U-bolt and Mounting Bracket, Mounting Locations Ahead of Transmission	
U-Bolt Placement – 150" W/B Crew Cab	
Subframe Mounting	2.18
Bracket Installation	
Modular Frame Hole Pattern	
U-bolt Installation	
Crew Cab Body / Frame Requirements	2.20
Modification of the Frame	2.21
Working on Chassis frame	
Drilling and Welding	
Reinforcement of Chassis Frame	
Welding	
Fluid Lines	2.23
Preparation of Additional Lines	
Installation of Additional Lines	

Electrical Wiring and Harnessing	2.24
Wiring	
Wire Color Code	
Maximum Allowable Current	
Electrical System Modifications	2.28
Exhaust System	2.28
Fuel System	
Rear Lighting	
Serviceability	
Wheelbase Alteration	2.30
Shortening/Lengthening the Wheelbase Without Altering the Frame	
Altering the Wheelbase by Altering the Frame	
Glossary of Terms – Chassis Wheelbase Alteration	
Wheelbase Alteration	2.31
Y APPLICATION SUMMARY CHART	
3500, 4500, Gas	3.3
Body & Payload Weight Distribution (% Front/% Rear)	
3500HD Diesel	
Body & Payload Weight Distribution (% Front/% Rear)	
4500HD Diesel	3.5
Body & Payload Weight Distribution (% Front/% Rear)	
4500XD Diesel, 5500HD Diesel, 5500XD Diesel	
Automatic Transmission	
3500/4500 Crew Cab Gas	
Gas Cab Body & Payload Weight Distribution (% Front/% Rear)	
4500HD, 4500XD, 5500HD Crew Cab Diesel	

PAGE

İ۷

VIECHANICAL AND CAB SPECIFICATIONS	4.1
Engine Horsepower and Torque Chart	
GVW/GCW Ratings	
Rear Frame Height Chart	4.2
Body Application Summary Chart	4.21
Paint Code Chart	4.3
Low Cab Forward Towing Procedure	4.4
When towing a vehicle	
Front End Towing (Front Wheels Off Ground) CAUTION: When towing	
After Towing	
Front End Towing (All Wheels On the Ground)	
Towing with all wheels on the ground	
CAUTION	
After Towing	
Rear End Towing Special Towing Instructions	
5	
EIGHT DISTRIBUTION CONCEPTS	
Mechanical and Cab Specifications	5.01
6500XD Towing Procedures	5.02
Weight Restrictions	5.1
Gross Axle Weight Rating	
Weighing the Vehicle	
Tire Inflation Center of Gravity	
Weight Distribution	5 .2
Glossary of Dimensions	
•	
Weight Distribution Formulas	
Recommended Weight Distribution % of Gross Vehicle Weight by Axle	
Trailer Weight	5.14
Payload at Kingpin	
Payload at Rear Tandem	

	Performance Calculations	3.10
	Speed Formula	
	Grade Horsepower Formula	
	Air Resistance Horsepower Formula	
	Engine Horsepower Formula	
	Gradeability Formula	
	Startability Formula	
	Vertical Center of Gravity Formula	
	Horizontal Center of Gravity Formula	
	Bridge Formula Weights	5.26
CUI	OMMODITY AND MATERIAL WEIGHTS	
GUI		
	Approximate Weights of Commodities and Material	6.1
320	00,4500 GAS	
JJU		
JJU	SPECIFICATIONS	7.1
330		7.1
	SPECIFICATIONS	7.1
JJ0	SPECIFICATIONS	7.1
330	SPECIFICATIONS Vehicle Weight Limits Technical Notes	7.1
330	SPECIFICATIONS	
	SPECIFICATIONS	
JJ0	SPECIFICATIONS Vehicle Weight Limits Technical Notes Chassis Curb Weight Maximum Payload Weight High Idle Mode Frame and Crossmember Specifications	7.4
	SPECIFICATIONS	7.4 7.5
	SPECIFICATIONS Vehicle Weight Limits Technical Notes Chassis Curb Weight Maximum Payload Weight High Idle Mode Frame and Crossmember Specifications Frame Chart	7.4 7.5 7.7
	SPECIFICATIONS Vehicle Weight Limits Technical Notes Chassis Curb Weight Maximum Payload Weight High Idle Mode Frame and Crossmember Specifications Frame Chart Chassis Dimensions	7.4 7.5 7.7
	SPECIFICATIONS Vehicle Weight Limits Technical Notes Chassis Curb Weight Maximum Payload Weight High Idle Mode Frame and Crossmember Specifications Frame Chart Chassis Dimensions. Cab Tilt Illustration	7.4 7.5 7.7

Kear Axie Chart	
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
Suspension Deflection Charts – 3500,4500 Gas	7.1/
Tire and Disc Wheel Chart – 3500	7.1!
Tire and Disc Wheel Chart – 4500	7.10
Propeller Shaft	7.1
Brake System Diagram, 12,000 GVW	7.19
Vacuum Over Hydraulic	
Brake System Diagram, 14,500 GVW	
Vacuum Over Hydraulic	
High Idle Mode	
Condition for Operating the High Idle Mode Control	
Condition for Cancelling the High Idle Mode Control	
Through the Rail Fuel Fill	7.22
Installation Instructions	
Fuel Type	7.23
Rear View Fuel Fill	7.23
Top View Fuel Fill	7.24
Through the Rail Fuel Fill Frame Hole	7.2!
Fuel Fill Parts Illustration	7.20
Fuel Fill Parts List	
3500, 4500 CREW CAB GAS	
Specifications	8.
Vehicle Weight Limits	
Technical Notes	
Chassis Curb Weight	

Maximum Payload Weight

Frame and Crossmember Specifications	
Frame Chart	8.5
Auxiliary Views 176"	8.6
Chassis Dimensions	8.7
Center of Gravity	
3500 Gas Crew Cab	
4500 Gas Crew Cab	
Front Axle Chart 3500	8.11
Front Axle Chart 4500	8.12
Rear Axle Chart 3500	8.13
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
Rear Axle Chart 4500	8.15
Definitions	
Formulas for Calculating Rear Width and Height Dimension	
Suspension Deflection Charts – 3500, 4500	8.17
Tire and Disc Wheel Chart – 3500	8.18
Tire	
Disc Wheel	
Tire and Disc Wheel Chart – 4500	8.19
Tire	
Disc Wheel	
3500, 4500 Crew Cab Propeller Shaft	8.20
Brake System Diagram 12,000 GVW	8.22
Vacuum Over Hydraulic	
Brake System Diagram 14,500 GVW	8.23
Vacuum Over Hydraulic	

High Idle Mode	8.24
Condition for Operating the High Idle Mode Control	
Condition for Cancelling the High Idle Mode Control	
Through the Rail Fuel Fill	8.25
Installation Instructions	
Fuel Type	8.25
Rear View Fuel Fill	
Top View Fuel Fill	8.27
Through the Rail Fuel Fill Frame Hole	
Fuel Fill Parts Illustration	8.29
Fuel Fill Parts List	8.30
3500HD DIESEL SPECIFICATIONS	9.1
Vehicle Weights, Dimensions and Ratings	9.2
Vehicle Weight Limits	
Technical Notes	
Chassis Curb Weight	
Maximum Payload Weight	
Frame and Crossmember Specifications	9.4
Frame Chart	9.5
3500HD Diesel Standard Cab - Top View	9.6
3500HD Diesel Standard Cab - Left Side View	9.7
3500HD Diesel Standard Cab - Right Side View	9.8
SCR / DPF 4JJ1-TC	9.9
Option Side Fuel Tank	9.10
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 150 Wheelbase	

Addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase

Addition to the Standard In Rail Fuel Tank RPO NLX (150 and 176 WB, LH rail only)

PAGE

ix

Cab Tilt	
Turning Diameters	9.14
Center of Gravity	9.15
Front Axle Chart	
Rear Axle Chart	9.17
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
3500HD Suspension Deflection Charts	
Tire and Disc Wheel Chart – 3500HD	9.20
Tire	
Disc Wheel	
Propeller Shaft	9.21
Brake System Diagram 13,000 GVW	9.23
Vacuum Over Hydraulic	
PTO Location, Drive Gear and Opening Information	9.24
Opening Diagram	9.25
In-Frame Diesel Fuel Fill	9.26
Rear View Fuel Fill	
Top View Fuel Fill	
Hose Modification	9.29
Various Width Bodies and Fuel Fill Vent Protection	
Ultra Low Sulfur Diesel Label	9.30
Through the Rail Fuel Fill Frame Hole	9.31
3500HD Diesel Fuel Filler Kit Instructions	9.32
Installation Instructions and Considerations	
Roll-Over Valve Tubing	
Filler Neck Installation	

HD DIESEL SPECIFICATIONS	10.1
Vehicle Weights, Dimensions Ratings	10.2
Vehicle Weight Limits	
Technical Notes	
Chassis Curb Weight	
Maximum Payload Weight	
Frame and Crossmember Specifications	10.4
Frame Chart	10.5
4500HD Diesel Standard Cab - Top View	10.6
4500HD Diesel Standard Cab - Left Side View	10.7
4500HD Diesel Standard Cab - Right Side View	10.8
SCR / DPF 4HK1-TC	10.9
Option Side Fuel Tank	10.10
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 150 Wheelbase	
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase	
In place of the Standard In Rail Fuel Tank on T34003 ONLY Side View 176 Wheelbase	
Addition to the Standard In Rail Fuel Tank RPO NLX (150 and 176 WB, LH rail only)	
Replacing standard In Rail Fuel Tank (176 WB only, RH rail only)	
Cab Tilt	10.14
Turning Diameters	10.15
Center of Gravity	10.16
Front Axle Chart	10.17
Rear Axle Chart	10.18
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
4500HD Suspension Deflection Charts	10.20

хi

Tire and Disc Wheel Chart – 4500HD	
Tire	
Disc Wheel	
Propeller Shaft	
Brake System Diagram 14,500 GVW	10.24
Vacuum Over Hydraulic	
PTO Location, Drive Gear and Opening Information	
Opening Diagram	10.26
In-Frame Diesel Fuel Fill	10.27
Rear View Fuel Fill	
Top View Fuel Fill	
Hose Modification	10.30
Various Width Bodies and Fuel Fill Vent Protection	
Ultra Low Sulfur Diesel Label	10.31
Through the Rail Fuel Fill Frame Hole	10.32
4500HD Diesel Fuel Filler Kit Instructions	
Installation Instructions and Considerations	
Roll-Over Valve Tubing	
Filler Neck Installation	
1500XD DIESEL SPECIFICATIONS	11.1
Vehicle Weights, Dimensions and Ratings	11.2
Vehicle Weight Limits	
Technical Notes	
Chassis Curb Weight	
Maximum Payload Weight	
Frame and Crossmember Specifications	

Frame Chart	11.5
4500XD Diesel Standard Cab - Top View	11.6
4500XD Diesel Standard Cab - Left Side View	11.7
4500XD Diesel Standard Cab - Right Side View	11.8
SCR / DPF 4HK1-TC	11.9
Option Side Fuel Tank	11.10
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 150 Wheelbase	
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase	
In place of the Standard In Rail Fuel Tank T44003 ONLY Side View 176 Wheelbase	
Addition to the Standard In Rail Fuel Tank RPO NLX (150 and 176 WB, LH rail only)	
Replacing standard In Rail Fuel Tank (176 WB only, RH rail only)	
Cab Tilt	11.14
Turning Diameters	11.15
Center of Gravity	11.16
Front Axle Chart	11.17
Rear Axle Chart	11.18
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
Tire and Disc Wheel Chart – 4500XD	11.20
Tire	
Disc Wheel	
4500XD Suspension Deflection Charts	11.21
Propeller Shaft	11.22
Brake System Diagram 16,000 GVW	11.24
Vacuum Over Hydraulic	
PTO Location, Drive Gear and Opening Information	11.25
Opening Diagram	11.26

In-Frame Diesel Fuel Fill	11.27
Rear View Fuel Fill	
Top View Fuel Fill	
Hose Modification	11.30
Various Width Bodies and Fuel Fill Vent Protection	
Ultra Low Sulfur Diesel Label	11.31
Through the Rail Fuel Fill Frame Hole	11.32
4500XD Diesel Fuel Filler Kit Instructions	11.33
Installation Instructions and Considerations	
Roll-Over Valve Tubing	
Filler Neck Installation	
5500HD DIESEL SPECIFICATIONS	12.1
Vehicle Weights, Dimensions and Ratings	12.2
Vehicle Weight Limits	
Technical Notes	
Chassis Curb Weight	
Maximum Payload Weight	
Frame and Crossmember Specifications	12.4
Frame Chart	12.5
5500HD Diesel Standard Cab Top View	12.6
5500HD Diesel Standard Cab -Left Side View	12.7
5500HD Diesel Standard Cab Right Side View	12.8
SCR / DPF 4HK1-TC	
Option Side Fuel Tank	12.10
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 150 Wheelbase	
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase	

In place of the Standard In Rail Fuel Tank

Addition to the Standard In Rail Fuel Tank RPO NLX (150 and 176 WB, LH rail only)

Replacing standard In Rail Fuel Tank (176 WB only, RH rail only)

Cab Tilt	
Turning Diameters	12.15
Center of Gravity	12.16
Front Axle Chart	12.17
Rear Axle Chart	12.18
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
5500HD Suspension Deflection Charts	12.20
Tire and Disc Wheel Chart	12.21
Tire	
Disc Wheel	
Propeller Shaft 5500HD	
Automatic Transmission	
Brake System Diagram, Hydraulic Brake Booster	12.24
PTO Location, Drive Gear and Opening Information	12.25
Opening Diagram	12.26
Diesel Fuel Fill	12.27
Rear View Fuel Fill	
Top View Fuel Fill	
Hose Modification	12.30
Various Width Bodies and Fuel Fill Vent Protection	
Ultra Low Sulfur Diesel Label	12.31
Through the Rail Fuel Fill Frame Hole	12.32
5500HD-Diesel Fuel Filler Kit Instructions	12.33

Installation Instructions and Considerations

Roll-Over Valve Tubing

Filler Neck Installation	
500XD DIESEL SPECIFICATIONS	13.1
Vehicle Weights, Dimensions and Ratings	13.2
Vehicle Weight Limits	
Technical Notes	
Chassis Curb Weight	
Maximum Payload Weight	
Frame and Crossmember Specifications	13.4
Frame Chart	13.5
4500XD Diesel Standard Cab Top View	13.6
4500XD Diesel Standard Crew Cab Left Side View	13.7
4500XD Diesel Standard Crew Cab Right Side View	13.8
SCR / DPF 4HK1-TC	13.9
Option Side Fuel Tank	13.10
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase	
Center Of Gravity	13.11
Turning Diameters	13.12
Front Axle Chart 4500XD	13.13
Rear Axle Chart 4500XD	13.14
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
4500XD Suspension Deflection Charts	13.16
Tire and Disc Wheel Chart – 4500XD	13.17
Tire	
Disc Wheel	
Propeller Shaft 4500XD	13.18
Automatic Transmission	13.19
Brake System Diagram, 16,000 GVW	13.20
Vacuum Over Hydraulic	

PTO Location, Drive Gear and Opening Information	13.21
Opening Diagram	
Diesel Fuel Fill	
Rear View Fuel Fill	
Top View Fuel Fill	
Hose Modification	13.26
Various Width Bodies and Fuel Fill Vent Protection	
Ultra Low Sulfur Diesel Label	13.27
Through the Rail Fuel Fill Frame Hole	13.28
4500XD-Diesel Fuel Filler Kit Instructions	13.29
Installation Instructions and Considerations	
Roll-Over Valve Tubing	
Filler Neck Installation	
4500HD, 5500HD CREW CAB DIESEL SPECIFICATIONS	14.1
Vehicle Weights, Dimensions and Ratings	14.2
Vehicle Weight Limits	
Technical Notes	
Chassis Curb Weight	
Maximum Payload Weight	
Frame and Crossmember Specifications	
Frame Chart	14.6
4500HD, 5500HD Diesel Standard Crew Cab - Top View	
4500HD, 5500HD Diesel Standard Crew Cab - Left Side View	14.8
4500HD, 5500HD Diesel Standard Crew Cab - Right Side View	14.9
SCR / DPF 4HK1-TC	14.10
Option Side Fuel Tank	14.11

Center of Gravity	14.12
Turning Diameters	14.13
Front Axle Chart 4500HD	14.14
Front Axle Chart 5500HD	14.15
Rear Axle Chart 4500HD	14.16
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
Rear Axle Chart 5500HD	14.18
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
4500HD Suspension Deflection Charts	14.20
5500HD Suspension Deflection Charts	14.21
Tire and Disc Wheel Chart 4500HD	14.22
Tire	
Disc Wheel	
Tire and Disc Wheel Chart 5500HD	14.23
Tire	
Disc Wheel	
Propeller Shaft 4500HD, 5500HD	14.24
Automatic Transmission 4500HD, 5500 HD	14.25
Brake System Diagram 14,500 GVW	14.26
Vacuum Over Hydraulic	
Brake System Diagram 17,950 GVW	14.27
Full Hydraulic	
PTO Location, Drive Gear and Opening Information	14.28
Opening Diagram	14.29
Diesel Fuel Fill	14.30
Installation Instructions	

Rear View Fuel Fill	
Top View Fuel Fill	
Hose Modification	14.33
Various Width Bodies and Fuel Fill Vent Protection	
Ultra Low Sulfur Diesel Label	14.34
Through the Rail Fuel Fill Frame Hole	14.35
LCF Diesel Fuel Filler Kit Instructions	14.36
Installation Instructions and Considerations	
Roll-Over Valve Tubing	
Filler Neck Installation	
5500XD DIESEL SPECIFICATION	15.1
Vehicle Weights, Dimensions and Ratings	15.2
Truck Weight Limits	
Technical Notes	
Chassis Curb Weight	
Maximum Payload Weight	
Frame and Crossmember Specifications	15.4
Frame Chart	15.5
5500XD Diesel Standard Cab - Top View	15.6
5500XD Diesel Standard Cab - Left Side View	15.7
5500XD Diesel Standard Cab - Right Side View	15.8
SCR / DPF 4HK1-TC	15.9
Option Side Fuel Tank	15.10
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 150 Wheelbase	
Addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase	
In place of the Standard In Rail Fuel Tank on RPO NL7 Side View 176 Wheelbase	

Xix

In addition to the Standard In Rail Fuel tank RPO NLX (150 and 176 wb LH rail only)

Replacing standard In Rail Fuel tank RPO NL7 (176 wb only RH rail only)

Cab Tilt	15.14
Turning Diameters	15.15
Center of Gravity	15.16
Front Axle Chart	15.17
Rear Axle Chart	15.18
Definitions	
Formulas for Calculating Rear Width and Height Dimensions	
5500XD Suspension Deflection Charts	
Tire and Disc Wheel Chart	15.21
Tire	
Disc Wheel	
Propeller Shaft 5500XD	15.22
Automatic Transmission	15.23
Brake System Diagram Hydraulic Brake Booster	15.24
PTO Location, Drive Gear and Opening Information	15.25
Opening Diagram	15.26
Diesel Fuel Fill	15.27
Installation Instructions	
Rear View Fuel Fill	
Top View Fuel Fill	
Hose Modification	15.30
Various Width Bodies and Fuel Fill Vent Protection	
Ultra Low Sulfur Diesel Label	15.31
Through the Rail Fuel Fill Frame Hole	15.32
LCF Diesel Fuel Filler Kit Instructions	

XX

Roll-Over Valve Tubing Filler Neck Installation

VERTICAL EXHAUST LCF DIESEL ONLY	16.1
SINGLE CAB	17.1
Side View	
Front View	
Rear View	
Crew Cab – Cab Side View	
Front View	
Rear View	
Single Cab - Front and Side View (Air Shield on Single Cab only)	17.7
LCF DIESEL SERIES – 6500XD Diesel Specifications	18.1
Vehicle Weights, Dimensions and Ratings	
Frame and Crossmember Specifications	18.3
Frame Chart	
6500XD Diesel Standard Cab - Top View	18.5
6500XD Diesel Standard Cab - Left Side View	
6500XD Diesel Standard Cab - Right Side View	
SCR / DPF 4HK1-TC — 5.2 Diesel	18.8
Fuel Tank Options	18.9
Cab Tilt	
Turning Diameters	
Horizontal and Vertical CG of Chassis	18.12
6500XD Suspension Deflection Charts	

LCF DIESEL SERIES – UNDERSTANDING DPF REGENERATION; MODES OF REGENERATION QUICK REFERENCE GUIDE	18.14
Understanding SCR (Selective Catalyst Reduction)	18.15
Information	
SCR System Operation	
Adding DEF	
DEF Low Level Warning System	
DEF Quality and Storage	
DEF Safety	
Preparation of Vehicle for Storage beyond 30 Days	
Vehicles Stored Beyond One Year	
Limited Slip Differential Fluid	18.20
PAINT CODE CHART	19.1

4500 Crew Cab Diesel, 4500XD Crew Cab Diesel, 5500HD Crew Cab Diesel

6500XD Diesel Chassis Cab

Attention Body Builders! Chevrolet LCF Medium Duty Body Body Builder guides are now available for FREE!- go to: www.gmupfitter.com

Download the Body Builder Guide or sections for important information about up fitting your Chevrolet LCF Medium Duty Commercial truck. All printed material, specifications, and drawings contained in the Chevrolet LCF Medium Duty Body Builder Guide are based on the latest information available at the time of publication/posting. The manufacturer reserves the right to discontinue or change, at any time, without notice specifications, options, materials, equipment, design and models.

Information contained in the guide includes:

- · FMVSS safety standard
- EPA requirements
- OE recommendations
- Cautions for successful application up fitting and Frame modification procedures

H.1

INTRODUCTION

This guide has been provided as an aid to final stage manufacturers in determining conformity to the applicable Emission Control and Federal Motor Vehicle Safety Standards. Final stage manufacturers should maintain current knowledge of all Emission Regulations and Federal Motor Vehicle Safety Standards and be aware of their specific responsibility in regards to each standard.

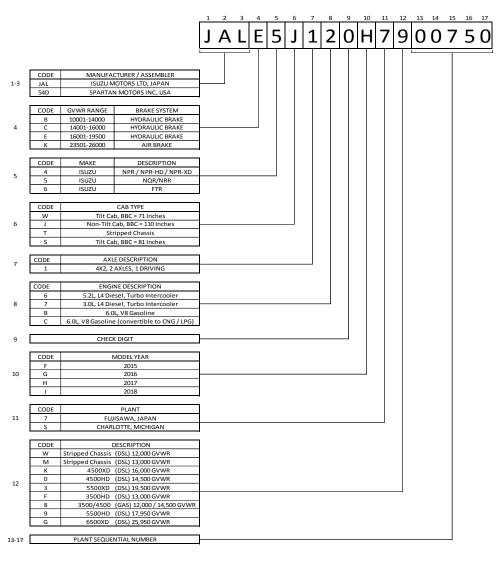
Any manufacturer making material alterations to this incomplete vehicle during the process of manufacturing the complete vehicle should be constantly alert to all effects, direct or indirect, on other components, assemblies or systems caused by such alterations. No alterations should be made to the incomplete vehicle that directly or indirectly results in any either component, assembly or system being in nonconformance with applicable Emission Regulations or Federal Motor Vehicle Safety Standards.

General Motors will honor its warranty commitment (for the cab-chassis only), to the ultimate consumer, provided: (1) the final stage manufacturer has not made any alterations or modifications which do not conform to any applicable laws, regulations or standards, or adversely affect the operation of the cab-chassis; and (2) the final stage manufacturer complied with the instructions contained in this guide with respect to the completion of the vehicle. Otherwise, the warranty becomes the responsibility of the final stage manufacturer.

The final stage manufacturer is solely responsible for the final certification of the vehicle and for compliance with Emission Control and Federal Motor Vehicle Safety Standards. The information contained in this guide has been provided for the final stage manufacturer's information and guidance.

This guide contains information pertaining to the:

Gasoline Models: 3500 Regular Cab Gas, 4500 Regular Cab Gas, 3500 Crew Cab Gas, 4500 Crew Cab Gas


Diesel Models: 3500HD Regular Cab Diesel, 4500HD Regular Cab Diesel, 4500XD Regular Cab Diesel, 5500HD Regular Cab Diesel

5500XD Regular Cab Diesel

4500HD Crew Cab Diesel, 4500XD Crew Cab Diesel, 5500HD Crew Cab Diesel, 6500XD Diesel Chassis Cab

1.11

LCF MEDIUM DUTY V.I.N. IDENTIFICATION

2017 Reach: JALB4T170H7W09999 2018 NQR Crew Cab: JALE5J160J7909999 2018 NPR-HD Gas Standard Cab: 54DC4W1B0JS809999 2018 FTR Wide Cab 54K65J60JSG09999

1.2

CAUTIONARY NOTES:

Electrical Sensitivity and Battery Relocation Warning

The Low Cab Forward Trucks are sensitive to poor electrical integrity of the starting circuit when compared to previous year models. This is due to the ever increasing electrical demands from the base vehicle that includes the new emissions componentry as well as more sophisticated engines and transmissions. The control modules for these devices require healthy electrical circuits without significant voltage drops through the supply and return circuits.

A relocation or modification of batteries coupled with insufficient wire gauge, poor terminal crimps, weak conductivity to frame rails, terminal corrosion, or loose bolts, could contributed to a possible no start condition.

All Fluids and Lubricants Caution

Any fluids or lubricants added to the chassis during the final manufacturing process must meet GM's fluids and lubricants specifications. These fluids and lubricant specifications vary based on model year and chassis model code. A recommended fluids list based on model and model year can be found in the Vehicle Owner's Manual.

Low Speed Applications for LCF Series Chassis

Any low speed vehicle applications using the Aisin Transmission such as sweeper, highway striping and road side mowing airport service must adhere to the following guidelines in order to prevent the over heating of the automatic transmission fluid.

FACTORY RECOMMENDATION:

Select Range 1 for low speed operations under 11 mph, (18km/h). Select Range 2 for low speed operation under 22 mph, (36km/h).

Auxiliary Transmission Cooler Warning

Installation of Auxiliary automatic transmission fluid cooler will void warranty on transmission/engine.

Transmission Temperature Warning Lamp

Automatic transmission fluid temperature warning lamp illuminates over 140 Centigrade/284°Fahrenheit.

Fuel Tank Caution

Fuel fill kit must be installed on cab chassis if it will be driven for an extended distance. (Note: fuel tank kit provides venting for the fuel tank)

Tapping into Engine Cooling System

Do not connect any auxiliary heating devices to the chassis cooling system. The chassis cooling system is part of the vehicle emission system and is used to thaw DEF fluid and meet mandatory emission thaw times.

Brake Override Logic

The ECM logic has adopted Brake Override Logic that will reduce engine RPM to idle RPM when the brake and accelerator pedals are applied simultaneously. This ECM logic has been adopted to enhance the safe operation of the vehicle. The brake override logic disables the accelerator pedal input and protects against vehicle malfunction in cases where the accelerator pedal and brake pedal are operated simultaneously, or if unintended driver acceleration pedal operations are detected.

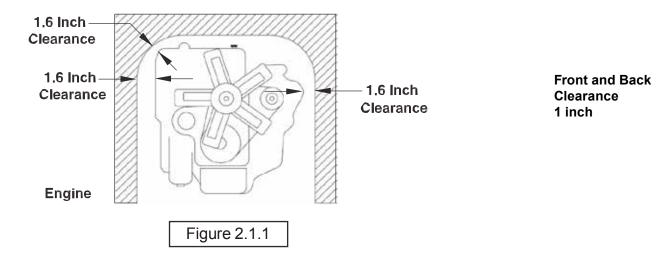
8 1.3

NO-START CONDITION – CLICKING OR BANGING FROM STARTER LCF Trucks Equipped with 5.2L (4HK1) Diesel Engines

It is possible to experience a no-start condition accompanied by a clicking or banging-type noise from the starter. This condition presents itself when vehicle battery voltage is low. The insufficient voltage/current will cause an improper ground for the X-17 starter relay. As a result, the starter will not remain engaged to start the engine. This is not an indication of a defective starter, alternator or ECM.

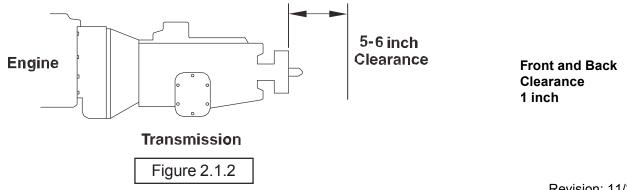
The following is a list of common causes for low battery voltage. Inspect these items as possible causes for the described condition before further diagnosis.

- 1. Extreme low ambient temperatures (below 10°C / 50°F). The chemical reactions inside of batteries take place more slowly when the battery is cold. The vehicle systems therefore have less energy to work with when it tries to start the engine.
- 2. Vehicles stored for long periods without proper battery charging and maintenance.
- 3. Batteries that have been relocated further away from the starter than the original designed location.
- 4. Batteries or battery cables that have been replaced with improper gauge.
- 5. Corroded battery terminals and cables.
- Vehicles that are started and stopped multiple times without allowing the charging system to replenish the batteries' charge.
- 7. Excessive use of electrical equipment such as electric lift gates.
- 8. Interior and exterior lighting left "On" without the engine running.

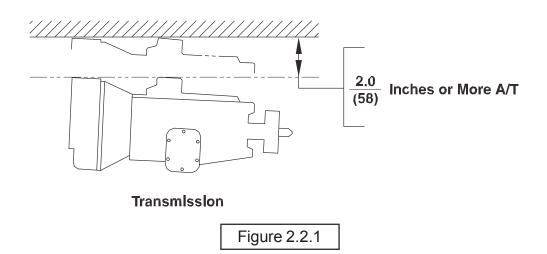

NOTE: Do not diagnose starters, alternators, ECMs or other no-start conditions prior to ensuring the battery is fully charged and none of the above common causes exist

INSTALLATION OF BODY AND SPECIAL EQUIPMENT

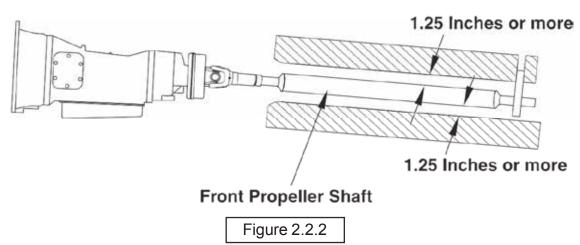
Clearances


Engine

At least 1.6 inches of clearance should be maintained around the engine. No obstacles should be added in front of the radiator or intercooler.


Transmission

The transmission is removed from the rear. Enough clearance must be provided to allow rearward movement of the transmission assembly. Clearance should be sufficient to allow 5 to 6 inches of unrestricted movement of the transmission assembly. In addition, provide at least 2 inches of clearance around the control lever on the side of the transmission to allow free movement without any binding.


INSTALLATION OF BODY AND SPECIAL EQUIPMENT Clearances

At least 2 inches of clearance should be maintained above the automatic transmission to allow for transmission removal.

Front and Center Propeller Shafts

At least 1.25 inches of clearance should be maintained around front and center propeller shafts.

INSTALLATION OF BODY AND SPECIAL EQUIPMENT Clearances

Rear Propeller Shaft

With the rear springs at maximum deflection, at least 1.25 inches of clearance should be provided over the rear propeller shaft.

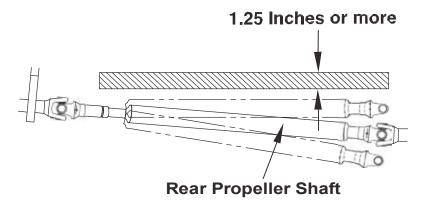


Figure 2.3.1

INSTALLATION OF BODY AND SPECIAL EQUIPMENT

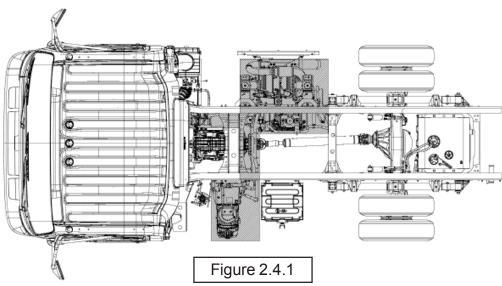
Clearances

Exhaust System

The exhaust system has a crucial role in meeting 2010 EPA regulations. In order to maintain compliance with the 2010 EPA emissions levels the Diesel Particulate Filter (DPF) and SCR package must not be moved. The distance between the engine exhaust manifold down pipe and Diesel Particulate Filter (DPF) / Selective Catalytic Reduction Package (SCR) must be maintained and the pressure in the system must be sustained at a constant level. Due to increased temperatures in the exhaust system during the regeneration cycle and the heat stress caused by these temperatures, body builders should closely evaluate the placement of equipment and provide protection to these added components as needed.

Diesel Particulate Filter and Selective Catalytic Reduction (SCR) Restrictions

The DPF/SCR has exhaust pressure pipes and temperature sensors. Care must be taken when a body is installed so as to not damage pipe sensors.

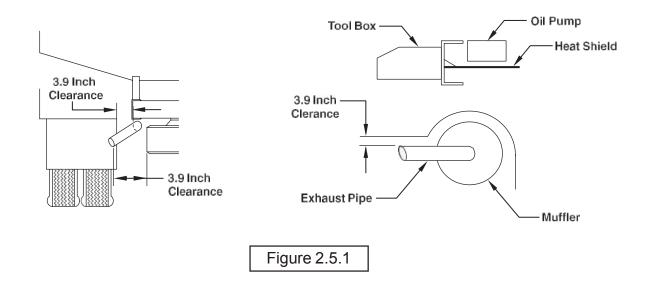

The DPF/SCR should be free from impact or vibration during body installation. The DPF/SCR must have enough room for disassembly of the unit for service and cleaning.

The DPF/SCR switch in the cab should not be removed or disabled. No modification or relocation of the DPF/SCR unit, pressure pipes, and sensor is permitted.

No Modification Zones

The **DPF/SCR** unit **CAN NOT** be modified or moved .

The **DEF** tank and pump **CANNOT** be modified or removed. **DEF** lines and coolant lines **CANNOT** be modified or rerouted.



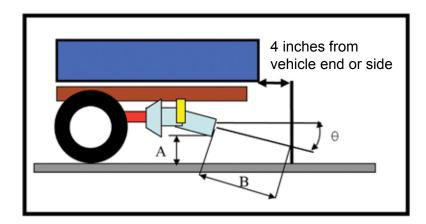
INSTALLATION OF BODY AND SPECIAL EQUIPMENT

Clearances

Exhaust Clearances

If flammable materials such as wood are used in the body, provide at least 3.9 inches of clearance between the body and any parts of the exhaust pipe, DPF/SCR Package. If it is impossible to maintain the minimum clearance, use a heat shield. Also use a heat shield if an oil pump or line is located above the exhaust pipe, muffler or catalytic converter.

- 1) Clearances around SCR system components must be greater than 1.0 inch at all times to avoid potential contact between the body and the exhaust components. The 1.0 inch allows for thermal expansion and assembly tolerance of the exhaust system. It does not account for dynamic movement in the body due to road conditions and other loads. Body companies are instructed to adjust this 1.0 inch clearance as required to account for body displacement while driving. This guidance does not supercede guidance or exhaust clearances for temperature sensitive or flameable components.
- 2) Exhaust temperatures have not changed since the introduction of DPF in 2007.


INSTALLATION OF BODY AND SPECIAL EQUIPMENT Clearances

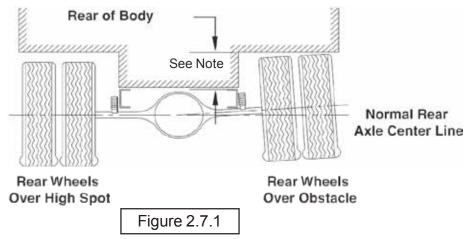
Exhaust system surface temperatures During Manual Regeneration

LCF Diesel Modification Guideline (heat issue)

(EXHAUST PIPE HEAT)

During the DPF regeneration cycle, exhaust gas temperatures are hot. Therefore, care should be exercised in placement of the pipe's end location and angle. Do not locate any body parts around the exhaust pipe's end area.

А	В	θ			
More than	More than	Less than			
8 inches	18 inches	45 degree			


Figure 2.6.1

INSTALLATION OF BODY AND SPECIAL EQUIPMENT

Clearances

Rear Wheel Axle

The design and installation of the body should allow sufficient clearance for full vertical movement of the rear wheels and axle when the vehicle travels over rough or unlevel surfaces.

Note: For recommended clearances, please refer to the Rear Axle Chart in each model's respective section.

Other Clearances

The transmission control cable may be broken if it is bent by or interferes with the body and its fixtures. To prevent this, 1 inch of minimum clearance should be provided. When cable is detached from body mounting, be sure not to bend the cable.

Accessibility to the grease nipple on the rear spring bracket/shackle should be provided so that serviceability with a grease gun is not hampered.

Parts	Minimum Clearance	Location
Brake Hose	6.7 in.	Axle Side
	1.6 in.	Frame Side
Parking Brake Cable	1.2 in.	_
Fuel Hose	1.6 in.	_
Shock Absorber	2.4 in.	Axle Side
	1.2 in.	Frame Side

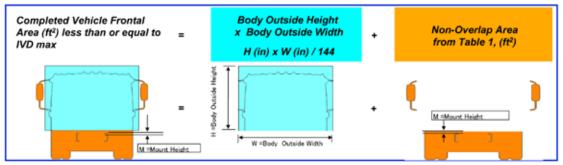
Body Installation

Chevrolet LCF 3500HD 2016 Model Year Diesel Completed Vehicle Frontal Area Calculation

The Chevrolet LCF 3500HD Diesel was certified for EPA Emissions Compliance by testing a Completed Vehicle.

The maximum frontal area of your Completed Vehicle must not exceed the certified size which was tested.

The Completed Vehicle Manufacturer is responsible for meeting Frontal Area requirements, (similar to responsibilities of Vertical CG, Weight Distribution, etc.)


The maximum curb weight of your Completed Vehicle must not exceed 12,051 lbs.

The frontal area is calculated in two parts:

1) Body Area (Outside Height x Outside Width

Cab/Chassis Non-Overlap Area (Based on Body Width and Mounting Height.)

Use Table 1 for manual frontal area calculation; or fill out Table 3 to automatically populate Calculators #1 - #2.

							TABLE	1						
Cab/Chassis Non-Overlap Area, ft ²														
W M, Body Mounting Height (Between the bottom of Body and the Top of Frame Rail, in inches) Body Width														
body madi	2	2.5	3	3.5	4	4.25	4.5	5	5.5	6	6.5	7	7.5	8
84"	16.7	17.0	17.3	17.6	17.8	18.0	18.2	18.4	18.7	19.0	19.3	19.5	19.8	20.1
90"	16.6	17.0	17.2	17.5	17.8	18.0	18.1	18.3	18.6	18.9	19.2	19.4	19.8	20.0
96"	16.4	16.7	16.9	17.3	17.5	17.6	17.8	18.0	18.4	18.6	18.9	19.2	19.5	19.7

Manual Calculation Example: 2016 Chevrolet LCF 3500HD Diesel, 90" Outside Width, 85.6" Outside Height (79" Inside Height),
4" Long Sills, 2.5" of mounting wood. Body mounting height is 6.5" (4" Long Sill + 2.5" Wood)

Body frontal area:
90 x 85.6 / 144 = 53.5 ft²

Non-Overlap Area (from Table 1):
19.2 ft²

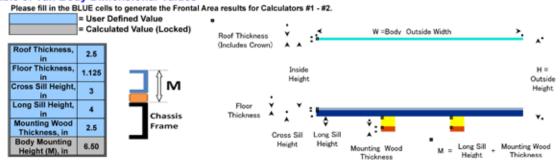
Total completed vehicle frontal area:
53.5 ft² + 19.2 ft² = 72.7 ft²

(Betow 2016 Limit)

Frontal Area Limits

The 2016 Model Year certifications have a frontal area limit of:

- Base Chassis Limit: 79.9 ft² (7.42 m³). No Isuzu Application Approval is Required.
- Base Chassis Limit with Air Deflector PN TBD See your GM Dealer: 84.8 ft² (7.88 m³). Confirmation/Spoiler Use Required for this optional frontal area.
 Your Isuzu dealer can obtain approval information from Isuzu Application Engineering.


TABLE 2 Completed Frontal Area Limits by 3500HD Diesel Model Year 2016								
Model Year	Wheelbase	Max Frontal Area	Application Approval					
2016	109" / 132.5" / 150" / 176" (CK1 / CK2 / CK3 / CK4)	79.9 ft ² = 7.42 m ²	Not required					
2016 With Air Deflector	109" / 132.5" / 150" / 176" (CK1 / CK2 / CK3 / CK4)	84.8 ft ² = 7.88 m ²	Required					

This frontal area calculator is a supplemental tool provided by Isuzu North America Corporation Always consult the incomplete Vehicle Document (IVD) for the completed vehicle requirements. A copy of the IVD is also available at gmupfilter.com, Chevrolet Low Cab Forward.

Figure 2.8.1

Body Installation

Table 3: Van Body Dimensional Values

Calculator 1: Completed Vehicle Frontal Area From Body Inside Height (Results based on Table 3 input)

Body Outside Width W, in	Body Inside Height, in	Body Outside Height, in	Body Frontal Area, ft ²	Completed Vehicle Frontal Area,	Proposed Condition OK?	
					2016	2016
				ft ^c	Without	With
					Air Deflector	Air Deflector
84	79	85.625	49.9	69.2	OK	OK
84	85	91.625	53.4	72.7	OK	OK
84	91	97.625	56.9	76.2	OK	OK
90	79	85.625	53.5	72.7	OK	OK
90	85	91.625	57.3	76.5	OK	OK
90	91	97.625	61.0	80.2		OK
96	79	85.625	57.1	76.0	OK	OK
96	85	91.625	61.1	80.0		OK
96	91	97.625	65.1	84.0		OK

Calculator 2: Completed Vehicle Frontal Area From Body Outside Height (Results based on Table 3 input)

Body Outside Width W, in	Body Inside Height, in	Body Outside Height, in	Body Frontal Area, ft ²	Completed Vehicle Frontal Area, ft²	Proposed Condition OK?	
					2016 Without Air Deflector	2016 With Air Deflector
84	78.375	85	49.6	68.9	OK	OK
84	84.375	91	53.1	72.4	OK	OK
84	89.375	96	56.0	75.3	OK	OK
90	78.375	85	53.1	72.4	OK	OK
90	84.375	91	56.9	76.2	OK	OK
90	90.375	97	60.6	79.9	OK	OK
96	78.375	85	56.7	76.0	OK	OK
96	84.375	91	60.7	80.0	-	OK
96	90.375	97	64.7	84.0	-	OK

INAC Frontal Area Calculator

Filename: "FrontalAreaCalculator for Chevy 3500HD 2016-04-19.xlsx"

Figure 2.9.1

2.10

Body Installation

Mirrors

The Chevrolet LCF series chassis will accommodate up to 96 inch wide bodies without modification to the mirror brackets.

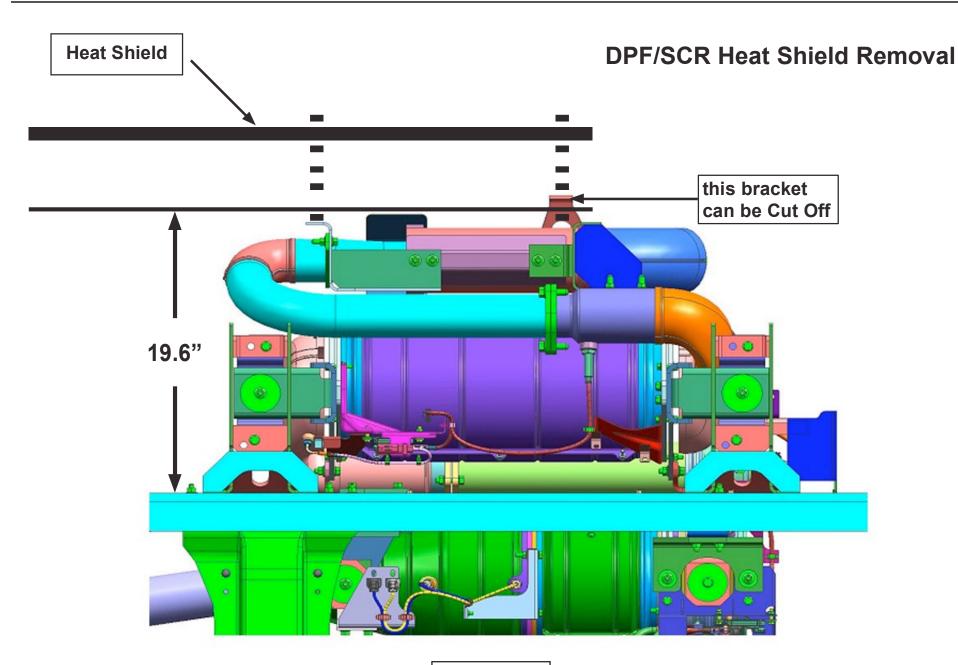
The Chevrolet LCF 4500, 4500HD, 4500XD, 5500HD and 5500XD chassis will accommodate up to 96 inch wide bodies without modification to the mirror brackets. Bodies from 97 to 102 inches wide will require that the mirror brackets be modified. This Modification can be made at the port and the vehicle order/label will indicate a Regular Product Option of TBD indicating "Mirror Bracket for 102 wide body". The brackets can also be modified by the GM Chevrolet Dealer or the Body Company by installing mirror brackets ordered from General Motors Service.

Side Step Door Installation recommendations

Floor of body should be at least 10" above frame rail (2.5" wood + 4" long sill + 3" cross sill + 1.125" floor)

Forward end plate of step well area can interfere with SCR system

All body components should maintain a minimum 1.0" of clearance to exhaust components UNDER ALL (DYNAMIC) CONDITIONS. (Body company will need to add to this 1.0" clearance to account for flex or movement in the body)


Outer heat shield on SCR system can be removed prior to mounting body if required for clearance Care should be taken to adequately shield exhaust

Driver's side steps can also be accommodated, if door is located behind DEF tank Battery may have to be relocated, depending on door location

Access hatch for DEF tank fill may have to be added, depending on door location

DPF/SCR Heat shield Removal

The exhaust external heat shield does not impact vehicle emissions or emissions system durability. This shield can be removed or modified in order to facilitate body or equipment mounting, but the completed vehicle manufacturer should ensure that, when completed, the exhaust will be adequately shielded to prevent unintentional contact with hot exhaust components, and that heat transfer to body components is not so high as to present safety or durability risks. www.gmupfitter.com

LCF 3500HD

Special Equipment on the Chassis

When installing special equipment on the chassis, extra consideration must be given to the weight and construction of the equipment to assure proper distribution of the load. Localization of the load should be prevented. All special equipment should be properly secured into position. We recommend the use of subframe members when installing special equipment.

Subframe Design and Mounting

The subframe assembly should be mounted as close to the cab as possible. It should be contoured to match the shape and dimensions of the chassis frame as closely as possible

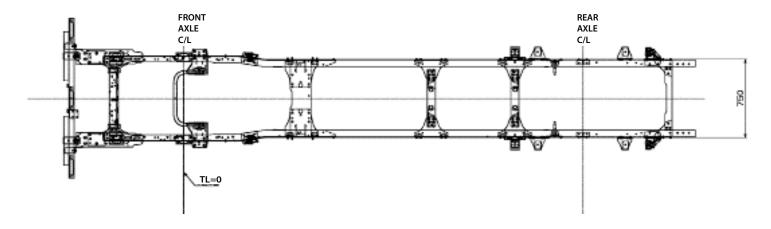
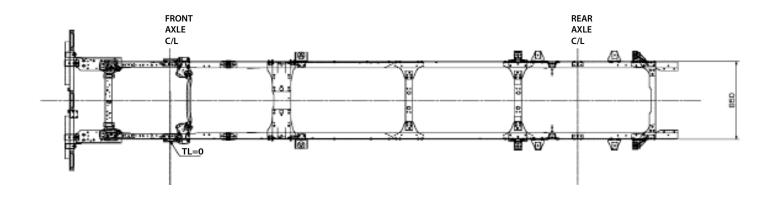
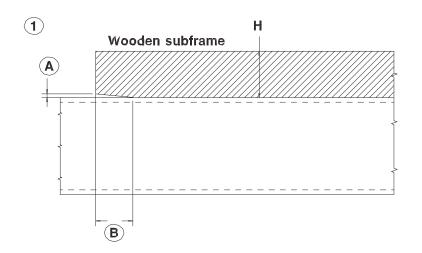
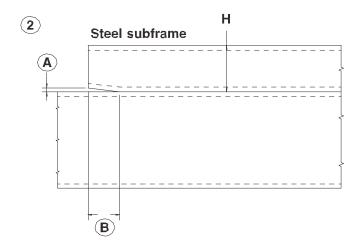
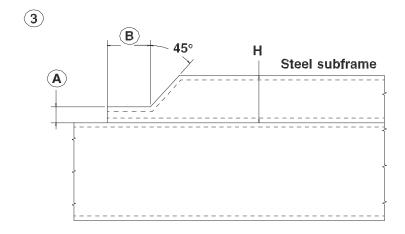


Figure 2.12.1

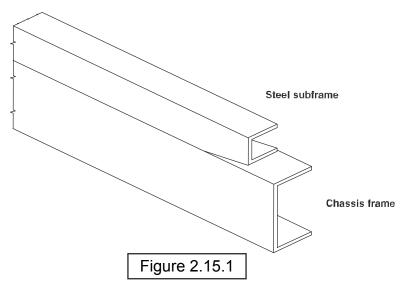
LCF 4500, 4500HD, 4500XD, 5500HD, 5500XD

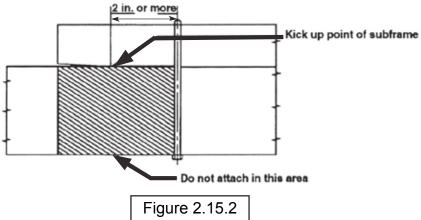

Figure 2.13.1

Subframe Contour

Contouring of the front end of the subframe members as shown in the three illustrations below will prevent stresses from being concentrated on certain areas of the chassis frame



Drawing	Α	В
1	0.2 ln.	<u>H</u> 2 ~ H
2	0.2 ln.	H or more
3	<u>H</u> 3	H or more


When using a steel subframe, do not close the end of the subframe.

Prohibited Attachment Areas

Do not attach the subframe with a bolt or bracket to the chassis frame at the points indicated in the following illustrations.

1. At the front end of the subframe. The attaching bolt or bracket must be at least 2 inches behind the kick up point of the subframe.


2.16

Revision: 11/30/2017

Prohibited Attachment Areas

2. Front U-bolt and Mounting Bracket, Mounting Locations Ahead of Transmission

Mandatory location due to after treatment device location and interior frame components. The chassis will be supplied with one steel crush block in cab for left hand forward body attaching location as illustrated in the drawings below and one body mounting bracket (painted yellow) attached to the right hand frame rail in the location shown in the drawings below. Body Builder will be required to design a mating bracket for attaching the body to the yellow painted chassis body mounting bracket (Ref page 2.16 for illustration of bolt clamping 2 brackets). No U bolt type attaching allowed.

2018 Chevrolet LCF

U-Bolt Placement - 150" W/B Crew Cab

Front, RHS U-bolt on 150" Wheelbase Crew Cab interferes with after treatment system. General Motors will supply body mounting bracket on chassis to facilitate body mounting on the passenger side of the vehicle as Illustrated.

CREW CAB 150" WB Body Mounting Bracket (A) Dimensions

2 - ϕ 11 Weld this side only · Material: ASTM A-36 or equivalent 6.35mm (0.25 inch) thick · Coating: OSHA Yellow powder coating · Hardware: GM supplied, two each • 10mm x 30mm hex head bolds 60 • 10mm hex nuts • Packaging (two part numbers): • PIO - Poly-Bag; 1 bracket, 2 10mm x 30mm hex head bolts. 2 10mm hex nuts • PDC - Box; 1 bracket, 2 10mm x 30mm hex 90 head bolts. 2 10mm hex nuts, installation All Dimensions in mm REV-A

Body Mounting Bracket will be painted "YELLOW" for easy identification

Figure 2.17.1

CREW CAB 150" WB Body Mounting Bracket (A) Location

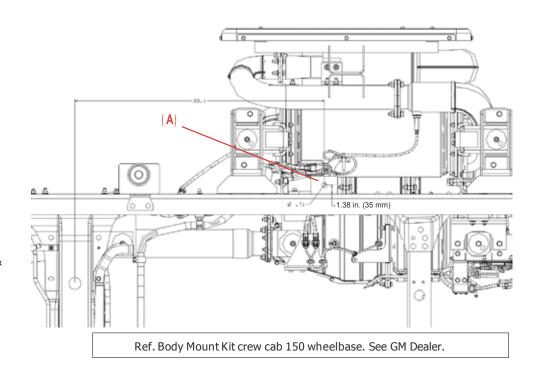


Figure 2.17.2

Subframe Mounting

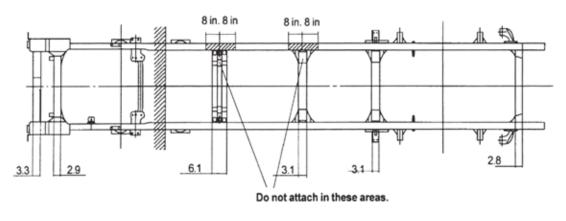
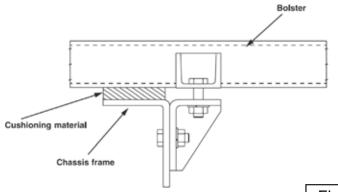



Figure 2.18.1

Within 8 inches of bends in the chassis frame or the attachment points of any crossmembers.

Bracket Installation

Mounting brackets should be clamped to the chassis frame using bolts. For proper positions in which to install the bolts, refer to the preceding section and the section "Modifications to the Chassis Frame." In addition to the illustrated bracket and U -bolts a shear plate may be required for adequately body mounting. The body company will be responsible for engineering their own mounting system.

The frame material is a heat treated, carbon manganese, low alloy steel with good weldability. The frame has a 80/40 mm modular hole spacing standard. This standard pattern will assist in body mounting.

Figure 2.18.2

MODULAR FRAME HOLE PATTERN

The frame material is a heat treated carbon manganese, and low alloy steel with good welding characteristics. The frame has an 80/40mm modular hole spacing standard. This standard pattern will assist with body mounting.

►1.5754

Depending on model, wheelbase and chassis specification some holes are in use and some holes are intentionally missing. (Subject to change without notice).

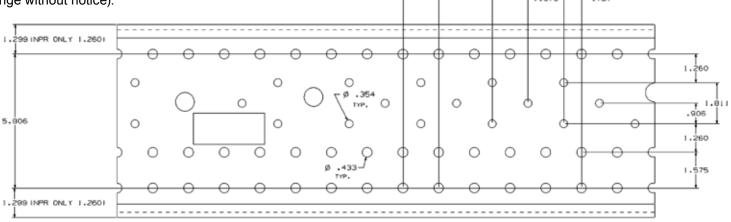
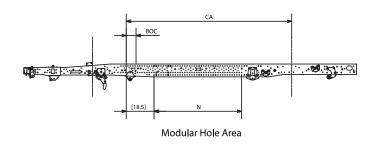



Figure 2.19.1

WB (inches) 3500, 3500HD 4500, 4500HD 4500XD, 5500HD 5500XD	N (inches)
109	34.6
132.5	58.3
150	75.6
176	92.9

-3.150-

Note: Re-tighten all attaching parts that are loosened during body installation.

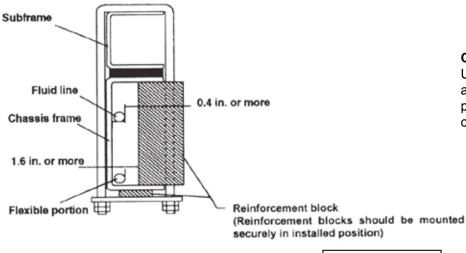

Note: Dimensions in inches

Figure 2.19.2

U-bolt Installation

When U-bolts are used to retain the subframe, reinforcement blocks must be installed in the frame members. This will prevent distortion of the frame flange as they are tightened. The drawing indicates the correct placement of reinforcement blocks. If you use wood blocks, be sure that there is sufficient clearance between them and any parts of the exhaust system. The use of J-bolts to retain the subframe is strictly prohibited.

If any fluid lines or electric cables are located near the reinforcement blocks, you must provide at least 0.4 inches of clearance between rigid or stationary portions, and at least 1.6 inches between moveable or flexible portions of the lines.

CAUTION:

U-Bolt placement is critical with new emission systems and controls. Extra care must be taken when placing bodies on chassis so as not to damage these components

Figure 2.20.1

For the installation positions of the U-bolts, refer to "Prohibited Attachment Areas."

Crew Cab Body / Frame Requirements

The Crew Cab 4500, 4500HD, 4500XD, and 5500HD will be available in two wheelbases, 150 and 176 inches. CA will be 88.5 and 114.5 inches. On this model chassis, General Motors will require that the body installed on the chassis have an understructure manufactured with any of the following structural steel "C" channels:

4" x 1-5/8", 7.5 lb./ft. 5" x 1-3/4", 6, 7 or 9.0 lb./ft. 6" x 2", 8.2, 10.5 or 13 lb./ft.

2.21

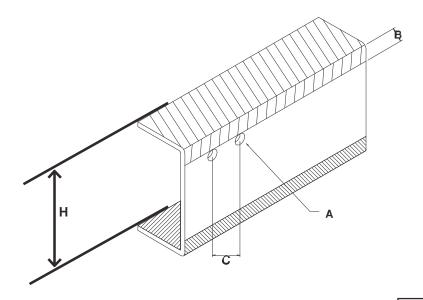
Modification of the Frame

Modifications of the chassis frame should be held to an absolute minimum. Modification work should be performed according to the instructions in the following paragraphs.

When modification is complete, chassis frame members should be carefully inspected to eliminate the possibility of any safety-related defects.

NOTE: PLEASE REFER TO NOTES ON CHASSIS FRAME MODIFICATION WITH ANTILOCK BRAKES.

Working on Chassis frame


The chassis frame is designed and built with consideration for proper load distribution. Sufficient physical strength is provided when the load is evenly distributed. Installation of special equipment on the chassis frame can cause variations in load distribution. If even distribution of load is not kept in mind when the equipment is installed, localization of stresses on specific areas of the frame could cause cracking of the chassis frame members or other problems, even if the total weight of the equipment is within the design limit.

The chassis frame is designed as an integral unit. Therefore, we do not recommend cutting the chassis frame under any circumstances.

Drilling and Welding

IMPORTANT NOTE: For vehicles equipped with electronic engines and or electronic or hydra-matic transmissions, electric arc welding must be done with the negative battery cable disconnected.

- 1. Do not drill or weld in the shaded portions of the chassis frame members. Do not weld within 0.8 inches from the edges of any existing holes. (Ref. page 2.20)
- 2. Hold the length of any welding beads within 1.2-2.0 inches. Allow at least 1.6 inches between adjacent welding beads.
- 3. All holes must be drilled. Do not use a torch to make any holes.
- 4. All riveting must be done with cold rivets. Do not use hot rivets.
- 5. The flange of the chassis frame must not be cut under any circumstances.
- 6. The subframe must be attached to the chassis frame with bolts. Do not weld.
- 7. Repaint exposed metal after drilling.

Dimensions:

A - no more than 0.59 inches in diameter

B - must be more than H/5 for welding

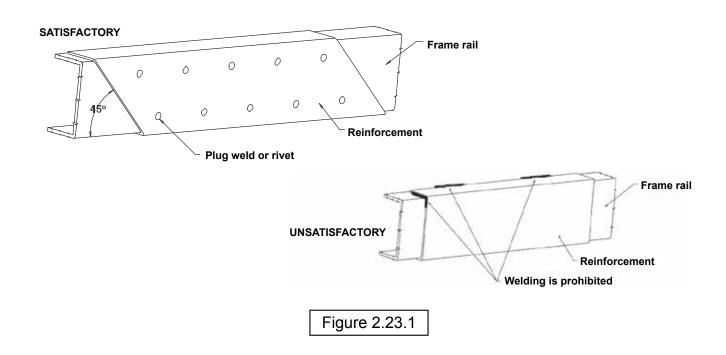
and H/7 for holes

C - must be more than 1.57 inches

H = Frame Height

Figure 2.22.1

Reinforcement of Chassis Frame


Reinforcements must be installed to prevent the considerable variation in the section modulus. They must be welded so as to avoid localized stresses.

The frame of the LCF is made of SAPH440 mild steel.

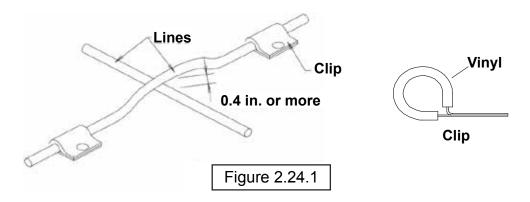
The drawing on the following page illustrates correct and incorrect methods of frame reinforcement.

Welding

- 1. Keep reinforcement plates and chassis frame free from moisture and water.
- 2. Avoid cooling with water after welding.
- 3. Use a suitable means to protect pipes, wires, rubber parts, leaf springs, etc. against heat and effect of sputtering.
- 4. Remove fuel tank assembly when welding portions near the fuel tank.
- 5. Remove coat of paint completely when welding painted areas. Repaint exposed metal after welding.

Fluid Lines

Do not disturb the layout of any brake lines or fuel lines unless absolutely necessary. When modification is needed, follow the instructions below carefully to ensure safety. Brake fluid lines must not be cut and spliced under any circumstances. We do not recommend the cutting or splicing of any fuel lines, but if it is absolutely necessary, be sure that the correct fitting and tools are used to form the joint, and then pressure test the joint. Steel lines are metric sizes.


Preparation of Additional Lines

- 1. Where possible, use only genuine GM lines as supplied by authorized GM Chevrolet dealers.
- 2. Use the correct metric flaring and bending tools to form the lines.
- 3. Avoid repeated bending. Do not use heat for flaring and bending the lines. Before and after forming the new lines, examine them carefully for scratches, distortion, dents and the presence of any foreign matter.

Installation of Additional Lines

Install new lines away from adjacent parts and away from any sources of heat.

- 1. A minimum clearance of 0.4 inches must be maintained between lines. Where necessary, clip the lines into position in order to maintain this minimum clearance.
- 2. Minimize any crossing between lines. If a crossing is unavoidable, use the following procedure:
 - a. At least 0.4 inches of clearance should be maintained between lines at the crossing point.
 - b. If the 0.4 inches of clearance cannot be maintained, or if the lines are subject to vibration, clip them securely.
- 3. Plan the bends and clipping points of the lines to minimize vibration and the resulting fatigue.
- 4. Use rust-proofed clips and apply vinyl coating to the portions of the lines to be clipped.
- 5. Install new lines in positions where they are protected against water, dirt, grit, sand, rocks and other foreign matter that can come from above or below, or can be flung up by the wheels.

Electrical Wiring and Harnessing

To increase the reliability of the wiring, all frame harnesses are covered with corrugated vinyl tubing. The following instructions apply to extending or modifying these harnesses. See the Electrical Section for information on commonly used circuits in the 3500, 3500HD and 4500, 4500HD, 4500XD, 5500HD, amd 5500XD.

Electrical Wiring and Harnessing

Wiring

- 1. Most wiring connections on Chevrolet LCF vehicles are made with terminals. We recommend the use of terminals when splicing cables and wires.
- 2. When splicing, use new wire of the same gauge, and do not make splices inside the corrugated tubing.
- 3. When making connections to the end of the harness, make sure the connections are electrically perfect. Use insulating tape as needed to prevent the entry of water, which results in short circuits and/or corrosion.
- 4. When making new circuits, or modifying circuits already installed, make the cables only just taut enough to remove any slack. Use clips or grommets where required to protect cables from heat or sharp edges. When cables must run near the exhaust system, see the instructions in the "Exhaust System" section.
- 5. Always use rustproof clips, and apply vinyl coating to that portion of the clips in direct contact with the harnesses. No scotch clips or connectors.
- 6. To minimize the vibration of the harness, clipping points should be set up according to the table.

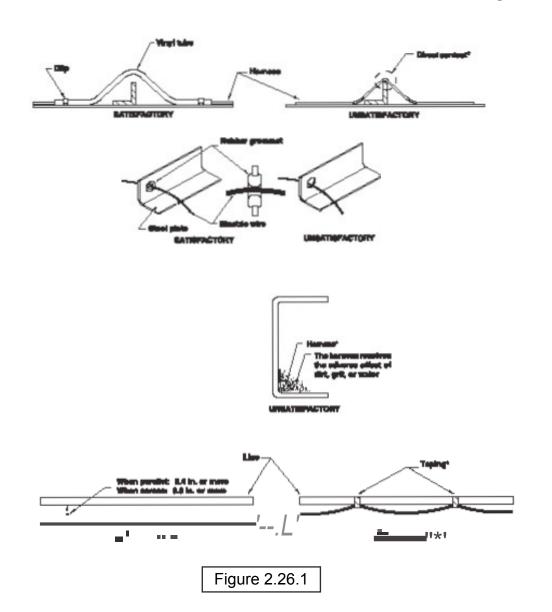

Harness Diameter	Clip Distance
less than 0.2 in.	less than 11.8 in.
0.2 in. ~ 0.4 in.	approx. 15.7 in.
0.4 in. ~ 0.8 in.	approx. 19.7 in.

Figure 2.25.1

- 7. When changing the length of the battery cable, do not cut or splice the existing cable. Make up a new cable of the correct length and wire gauge for the load and distance, without splices.
- 8. When using connectors, use a socket (female) connector on the electrical source side and a plug (male) connector on the electrical load side to lower the possibility of a short circuit when disconnected.
- 9. When connecting cables to moving or vibrating parts such as the engine or transmission, be sure to maintain sufficient slack in the wiring to absorb the vibration. Follow the example of existing cables connected by General Motors. Keep flexible cables clear of other parts.
- 10. Do not use vinyl tape in the engine compartment. The heat will tend to make it peel off. Use plated steel clips coated with rubber or vinyl.
- 11. When locating auxiliary equipment or lines near the ECM caution should be used in order to protect the ECM from excessive vibration, heat or chemical reactions.

Electrical Wiring and Harnessing

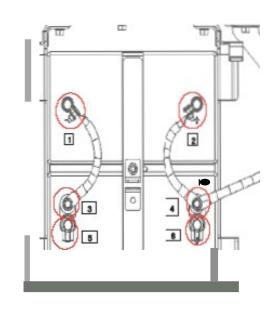


Figure 2.26.2

Electrical Wiring and Harnessing

Wire Color Code

The electrical circuits of the Chevrolet LCF Chassis Cab are connected with low-voltage stranded wire for automotive applications. The color coding standards are as follows for the Chevrolet LCF Chassis Cab:

B Starter circuits and grounds (5) Yellow Y Instrument circuit (1) Black (6) Brown W Generator (alternator) circuit Br Accessory circuit (2) White (6) Brown (7) Light Green

(3) Red R Lighting circuit Lg Other circuit

G Signal circuit (8) Blue L Windshield wiper motor circuit (4) Green

Maximum Allowable Current

Harness Design Diameter (mm)	AWG Equivalent	No. of Wires/Wire Diameter (mm)	Cross Sectional Area (mm2)	Maximum Allowable Current (Amps)
100	00	217/0.80	109.1	363
85	0	169/0.80	84.96	305
60	1	127/0.80	63.84	248
50	1	108/0.80	54.29	223
40	1	85/0.80	42.73	191
30	2	70/0.80	35.19	171
20	4	41/0.80	20.61	123
15	6	84/0.45	13.36	93
8	8	50/0.45	7.952	68
5	8	65/0.32	5.228	51
3	12	41/0.32	3.297	39
2	14	26/0.32	2.091	29
1.25	16	16/0.32	1.287	21
0.85	18	11/0.32	0.8846	17
0.5	20	7/0.32	0.5629	13

Reference: The values given in the "maximum allowable current" column are based on the ambient temperature condition of 104°F with temperature increase of 104°F.

2.28

Electrical Wiring and Harnessing

Electrical System Modifications

Modifications/add-on wiring must be carefully reviewed to ensure compatibility with the base vehicle wiring by reviewing system schematics, wire routing paths, harness connections, etc. Due to the wide range of modifications that may be required for vocational needs, it is not feasible for the O.E.M. to take into account all potential revisions. For this reason, any person modifying existing vehicle wiring must assume responsibility that the revisions have not degraded the electrical system performance. Any add-on wiring needs to be properly fused and routed to prevent cut, pinch, and chafe problems, as well as avoid exposure to excessive heat. Care must be exercised that existing vehicle interfaces do not have their current load capabilities exceeded, and that the respective control devices are not overloaded. Added wire size should be at least as large as the wire to which it is attaching in order for fuse protection to be maintained

A Packard electric wiring repair kit is available through Kent-Moore (P/N J38125-B) (Phone # 1-800-345-2233). This kit contains instructions, tools and components for making repairs to wiring harness components. This kit would also greatly assist in accomplishing necessary add-on wiring such as body marker lamps, so that system reliability/durability is maintained.

Electrical wiring components can be obtained through your authorized Chevrolet dealers. Packard Electric components are also available through Power and Signal (www.powerandsignal.com). Power and Signal may also be able to assist in making necessary wiring additions by providing custom wiring stubs or jumpers to your specifications.

Caution: Before servicing any electrical component, the ignition key must be in the LOCK position and all electrical loads must be OFF, unless instructed otherwise in GM service procedures. If a tool or equipment could easily come in contact with a live exposed electrical terminal, also disconnect the negative battery cable. Do not disconnect cable within 3 minutes after turning the ignition key to the Lock position. Failure to follow these precautions may cause personal injury and/or damage to the vehicle or its components.

Electrical Caution: Please see note in Section 1 Introduction on page 1.9 of on the subject of "NO-START CONDITION – CLICKING OR BANGING FROM STARTER 2012-2015MY Chevrolet LCF Equipped with 5.2L (4HK1) Diesel Engines".

Exhaust System

Modification of the exhaust system should be avoided. If modifications are absolutely necessary, the following points should be maintained.

1. Maintain the clearance specified in the "Exhaust System" table between all parts of the exhaust system and any fuel lines, brake lines, brake hoses, electrical cables, etc. The exhaust outlet should not point toward any of these parts.

	Clearance
Brake lines	2.4 in. or more. (If the combined section of a group of parallel brake lines is more than 7.8 in., a clearance of 7 in. or more
	should be provided.)
Flexible brake hoses	7.8 in. or more. (The temperature of flexible brake hoses should not exceed 158°F. If the highest temperature is not
	measurable, a clearance of more than 15.7 in. should be maintained between the hoses and the exhaust system.)
Wiring harnesses and cables	7.8 in. or more. (The temperature of flexible brake hoses should not exceed 158°F. If the highest temperature is not
	measurable, a clearance of more than 15.7 in. should be maintained between the hoses and the exhaust system.)
Steel fuel lines	3.1 in. or more.
Rubber or vinyl fuel hoses	5.9 in. or more.

2.29

Exhaust System

- 2. If a tool box is installed, it should preferably be made from steel. If a wooden tool box is installed, at least 7.8 inches of clearance should be maintained between the tool box and any parts of the exhaust system.
- 3. If the exhaust system is modified, it is the responsibility of those making the modification to ensure that the noise level meets appropriate standards.
- 4. If the exhaust system is modified it is the responsibility of those making the modification to ensure that the emission levels meet appropriate standards.

Fuel System

Relocation of the fuel tank, or installation of additional fuel tanks, is not recommended. If modifications to the fuel system are unavoidable, follow these recommendations:

- 1. Maintain adequate clearance between the fuel tank and any other device or structure.
- 2. Do not connect any additional fuel hose.

Rear Lighting

Brackets installed are temporary. Please do not use these brackets for body installation.

Serviceability

No matter what other modifications or changes are made, access to components requiring daily preventive maintenance or other routine service must not be obstructed. This includes:

- 1. Inspection, filling and draining of engine oil and cooling water.
- 2. Inspection, filling and draining of transmission fluid.
- 3. Adjustment, removal and installation of the fan belts.
- 4. Inspection, filling and removal of the battery and battery cover.
- 5. Inspection and filling of brake fluid.
- 6. Inspection and bleeding of the brake system and servo unit.
- 7. Maintenance of clearance for tightening of check bolt on brake safety cylinder.
- 8. Operation of the spare tire carrier, including mounting and dismounting of the spare tire.
- 9. Adjustment, removal and installation of distributor and/or cover.

2.30

Wheelbase Alteration

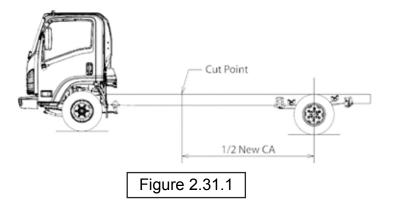
With certain applications, it may become necessary to alter the wheelbase of the chassis. The next two sections provide the suggested guidelines for accomplishing either shortening or lengthening of the wheelbase.

Shortening/Lengthening the Wheelbase Without Altering the Frame

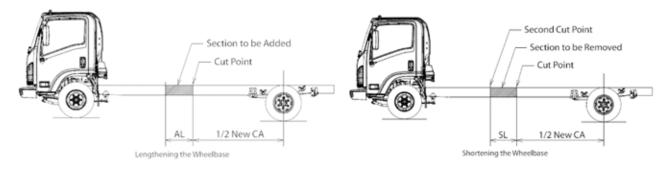
Since the frame is an integral part of the chassis, it is recommended that the frame not be cut if it is possible to avoid it. When shortening/lengthening the wheelbase on some models, it is possible to do so without cutting the frame. This is possible on models which have a straight frame rail. If the chassis does not have a straight frame rail, it may still be necessary to cut the frame. For instructions on shortening/lengthening these chassis, refer to the "Altering the Wheelbase by Altering the Frame" section of this book. Otherwise, the wheelbase may be shortened/lengthened by removing the rear suspension, drilling new suspension mounting holes at the appropriate spot in the frame, and sliding the rear suspension liner, and suspension crossmembers forward or aft.

The suspension and suspension crossmembers' rivet holes left in the frame rail flange must be filled with GRADE 8 bolts and hardened steel washers at both the bolt head and nut, HUC bolts or GRADE 8 flanged bolts and hardened steel washers at the nut. When shortening/lengthening the wheelbase in this manner, the following guidelines must be adhered to:

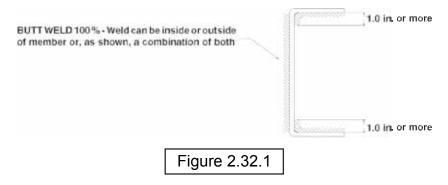
- 1. All frame drilling must comply with the DRILLING AND WELDING section of this book.
- 2. All rivet holes left in the frame rail flange from the suspension and suspension crossmembers must be either filled with GRADE 8 bolts and hardened steel washers at both the bolt head and nut, HUC bolts or GRADE 8 flanged bolts and hardened steel washers at the nut.
- 3. The components required to be slid forward or aft are the suspension and suspension hangers, suspension crossmembers and suspension frame liner.


Altering the Wheelbase by Altering the Frame

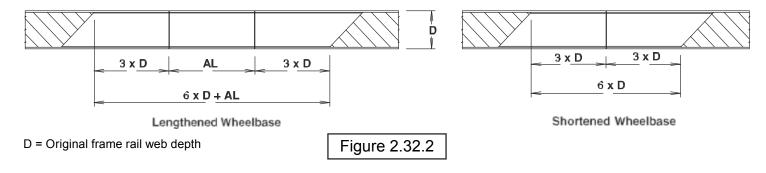
Even on a straight frame rail, it may be desirable to cut the frame and lengthen or shorten the wheelbase rather than simply sliding the rear suspension back or forward. The following section offers some guidelines and suggestions for cutting and lengthening or shortening the frame.

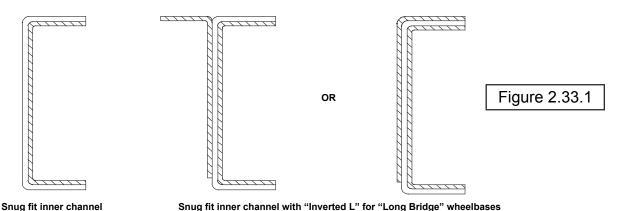

Glossary of Terms - Chassis Wheelbase Alteration

- CA Length from back-of-cab to rear axle centerline in inches.
- AL Added length (in case of a lengthened wheelbase). Difference between WB (new) and WB (old).
- SL Shortened length (in case of shortened wheelbase). Difference between WB (old) and WB (new).


- 1. Determine the added length (AL) or shortened length (SL) required to lengthen or shorten chassis. (For added wheelbase: New CA = CA + AL; For shortened wheelbase: New CA = CA SL.)
- 2. Obtain the material to be used as the insert for the lengthened wheelbase in the correct length (AL). The insert must have the same cross sectional dimensions and yield strength as the original frame rail.
- 3. Divide the new CA by two (2). Measure (new CA)/2 from the center of the rear axle forward and mark this point on the chassis frame (see figure below).

4. Cut the chassis frame at this point. If the wheelbase is to be lengthened, addition of the previously obtained insert (of length AL determined in step 1) will be made at this time. If the wheelbase is to be shortened, measure the distance (SL) forward of this cut and remove a length (SL) section from the chassis frame (see figure below). Insure that an adequate area on the frame remains for the required addition of the necessary reinforcements. These are the only suggested places for cutting the frame and reinforcements but may be changed upon the advice of GM Upfitters Engineering.


5. When welding the insert (length AL for wheelbase lengthening) to the original frame rail, a continuous butt weld must be used at the splices. When shortening the wheelbase, weld the ends of the chassis frame together with a continuous butt weld over the junction of the frame ends. Weld can be both the inside and outside of the frame rails using welding techniques prescribed by established welding standards (ref. SAE J1147) and in accordance with this guide. An example of this weld is shown below.


6. Determine the appropriate additional internal reinforcements which are required using this equation:

Reinforcement Length = AL + 6x (original frame rail web depth).

The figure below shows how this reinforcement is to be placed over the extended or shortened section of the frame rail.

The suggested cross section of this reinforcement is a snug fit inner channel. If the new wheelbase exceeds the upper limit of the optional wheelbases of this model, i.e.; a "long bridge", it may be necessary to use an "inverted L" reinforcement in addition to the snug fit channel reinforcement (see figures on next page). Application Engineering should be consulted for approval of such cases. It should be noted that these methods of reinforcements, and any other methods which may be used, require a 45° angled cut at both ends to avoid stress concentrations in the frame (note the figures under item 7).

7. The reinforcements must be fastened securely to only the web of the original chassis frame rail. The reinforcement must be held rigidly in place using either HUC bolts, GRADE 8 bolts and hardened steel washers at both the bolt head and nut, or GRADE 8 flanged bolts and hardened steel washers at the nut. Below are some suggested bolt patterns. It should be noted that these bolt patterns must not align the bolts vertically, i.e.: the bolt pattern must be staggered.

Figure 2.33.2

8. Lengthening the frame will also require extending the brake lines, basic chassis electrical harness. It is recommended that the original brake lines be removed and replaced with brake lines of the same diameter as the original lines and of the appropriate length. The extended ABS brake lines must be supported back to the frame to prevent vibration. The electrical harness must be extended in accordance with the ELECTRICAL WIRING AND HARNESSING section of this book. GM offers an electrical extension harnesses for the LCF chassis when a wheelbase is lengthened. One wheelbase longer is the recommended maximum wheelbase extension (please refer to the drive line section and particular models for number of drivelines and their maximum lengths). The extension of a wheelbase will require electrical extension harnesses.

Diesel

2016-2017 CHAS WRG HARNESS ASM; QTY 1 (See your GM dealer for parts.)
2016-2017 CHAS RR WRG HARNCLIP; QTY 5 (See your GM dealer for parts.)

Gas
2016-2017 CHAS WRG HARNESS ASM; QTY 2 (See your GM dealer for parts.)
2016-2017 CHAS RR WRG HARNCLIP; QTY 12 (See your GM dealer for parts.)

9. The propeller shaft's overall length will also need to be lengthened or shortened. If the extension is within the limits of the optional wheelbases of the respective model, the exact propeller shaft lengths and angles are given on or about Page 12 of the respective sections of this book. If the modified wheelbase exceeds the optional wheelbases of the respective model, the following guidelines must be adhered to:

Wheelbase Alteration

a. Propeller Shaft Length

The maximum propeller shaft lengths (pin to pin) for the respective models are shown in the table below.

ENGINE	GA	AS	DIESEL				
MODEL	3500	4500	3500HD	4500HD	4500XD/5500HD	5500XD	
Propeller Shaft Diameter (in.)	3.25	3.25	3.25	3.25	3.54	3.54	
Maximum Propeller Shaft Length (in.)	50.7	50.7	50.7	50.7	52.9	52.9	

Figure 2.34.1

b. Propeller Shaft Angles

The maximum propeller shaft angles, with respect to the previous shaft, are shown in the table below.

ENGINE	GA	AS	DIESEL					
MODEL	3500	4500	3500HD	4500HD	4500XD/5500HD	5500XD		
Maximum Propeller Shaft Angle	6.1°	6.1°	6.1°	6.1°	6.1°	6.1°		

Figure 2.34.2

- c. The propeller shaft angles must be designed such that the angles will cancel to avoid propeller shaft whip.
- d. The propeller shaft yokes must be assembled such that the propeller shaft yokes are "in phase."
- 10. Extending the frame will also require relocation and/or addition of crossmembers. If the extension is within the limits of the optional wheelbases of the respective model, the exact crossmember locations and dimensions are given in the respective model sections of this book. If the modified wheelbase exceeds the optional wheelbases of the respective model, the following guidelines must be adhered to:
 - a. The crossmember location will largely be determined by the propeller shaft lengths and where the center carrier bearing locations are for the propeller shaft assembly.
 - b. A crossmember must be located at the front and rear spring hangers of the rear suspension (refer to the appropriate section of this book to see where these suspension crossmembers are to be located).
 - c. The crossmember must be constructed such that it supports both the upper and lower flange on each frame rail (see drawing on next page). A crossmember such as the one on the next page may be constructed, or Chevrolet crossmembers may be obtained from your Chevrolet parts dealer.

2018 Chevrolet LCF

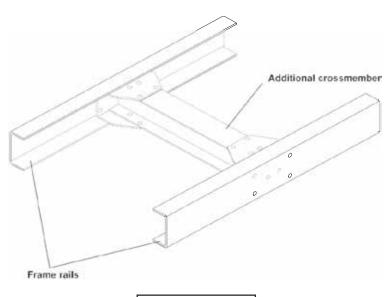


Figure 2.35.1

d. The maximum distance between crossmembers for the respective models is given in the table below.

ENGINE	GAS		DIESEL					
MODEL	3500	4500	3500HD	4500HD	4500XD/5500HD	5500XD		
Maximum Distance Between Crossmembers (in.)	35.7	35.7	35.7	35.7	35.7	35.7		

Figure 2.35.2

- e. The drilling for any additional holes in the frame rails must comply with the DRILLING AND WELDING section of this book.
- 11. All other aspects of lengthening or shortening the wheelbase must comply with the applicable section of this Body Builder's Guide. For special applications and longer than recommended body lengths, GM Upfitter Engineering must be consulted for approval.
- 12. Please contact GM Upfitter Engineering for guidelines on LCF CHASSIS frame modifications when the vehicle is equipped with an Antilock Brake System.

3.1

BODY APPLICATION SUMMARY CHART

ENGINEERING MODEL CODE	MODEL/GVWR	RPO CODE	WB	вос	10 ft.	12 ft.	14 ft.	16 ft.	18 ft.	20 ft.	22 ft.	24 ft.
P 11003		EB4	109	6.5	Х	Х						
P 12003	3500 Gas	FNJ	132.5	6.5			х					
P 13003	12,000 lbs	FWH	150	6.5				х	х			
P 14003		FNW	176	6.5						х		
P 31003		EB4	109	6.5	Х							
P 32003	4500 Gas	FNJ	132.5	6.5			х					
P 33003	14,500 lbs	FWH	150	6.5				х				
P 34003		FNW	176	6.5					х	х		
P 13043/P 33043	3500/4500	FWH	150	5		X ₍₂₎						
P 14043/P 34043	CREW CAB GAS 12,000 &14,500 lbs	FNW	176	5				X ₍₂₎				
T 21003		EB4	109	6.1	х	х						
T 22003		FNJ	132.5	6.1			х					
T 23003	3500 HD 13,000 lbs	FWH	150	6.1				х	х			
T 24003		FNW		6.1								
		FINVV	176	0.1						х		
T 31003		EB4	109	7.7		х						
T 32003	4500 HD	FNJ	132.5	7.7			х					
T 33003	14,500 lbs	FWH	150	7.7				х	х			
T 34003		FNW	176	7.7						х		
T 33043	4500 HD CREW	EE3	150	5.3		X ₍₁₎						
T 34043	CAB DIESEL 14,500 lbs	FNR	176	5.3				X ₍₂₎				

Notes:

1. 16' Dovetail landscape (12' deck plus 4' dovetail).

2. 18' Dovetail landscape (14' deck plus 4' dovetail).

Important:

Body selection recommendations are based on water level weight distribution and no accessories, liftgate or refrigeration units. This table is intended for reference and does not preclude the necessity for an accurate weight distribution calculation.

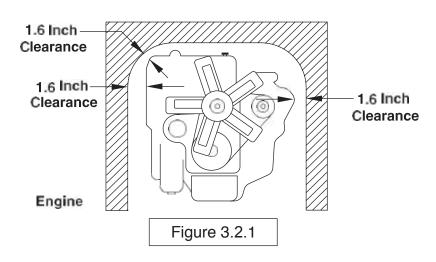
	APPLICATION SUMMARY CHART											
ENGINEERING MODEL CODE	MODEL/GVWR	RPO CODE	WB	вос	10 ft.	12 ft.	14 ft.	16 ft.	18 ft.	20 ft.	22 ft.	24 ft.
T 41003		EB4	109	7.7	Х	Х						
T 42003	4500 XD	FNJ	132.5	7.7			х					
T 43003	16,000 lbs	FWH	150	7.7				Х	х			
T 44003		FNW	176	7.7					х	х		
T 43043	4500 XD CREW CAB DIESEL	EE3	150	5.3		X (1)						
T 44043	16,000 lbs	FNR	176	5.3				X (2)				
T 51003		EB4	109	7.7	х	х						
T 52003		FNJ	132.5	7.7			х					
T 53003	5500 HD 17,950 lbs	FWH	150	7.7				Х	х			
T 54003	17,930 lbs	FNW	176	7.7					х	х		
T 55003		EM2	200	7.7							х	
T53043	5500 HD CREW	EE3	150	5.3		X (1)						
T54043	CAB DIESEL 17,950 lbs	FNR	176	5.3				X (2)				
T 61003		EB4	109	7.7	Х							
T 62003		FNJ	132.5	7.7		х	х					
T 63003	5500 XD 19,500 lbs	FWH	150	7.7				х				
T 64003		FNW	176	7.7					х	х		
T 65003		EM2	200	7.7							Х	
T 66003		EL5	212	7.7								х

Notes:

1. 16' Dovetail landscape (12' deck plus 4' dovetail).

2. 18' Dovetail landscape (14' deck plus 4' dovetail).

Important:


Body selection recommendations are based on water level weight distribution and no accessories, liftgate or refrigeration units. This table is intended for reference and does not preclude the necessity for an accurate weight distribution calculation.

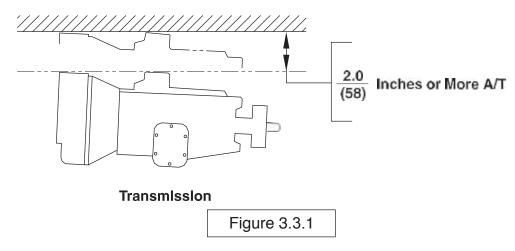
2018 Chevrolet LCF Revision: 03/31/2017

INSTALLATION OF BODY AND SPECIAL EQUIPMENT 6500XD CLEARANCES

Engine

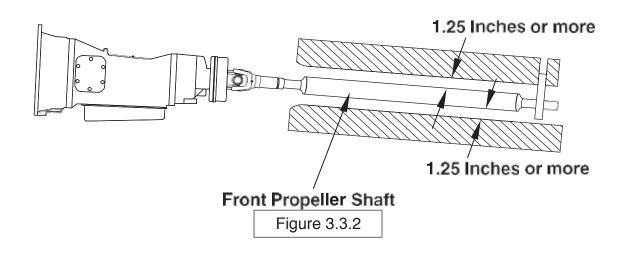
At least 1.6 inches of clearance should be maintained around the engine. No obstacles should be added in front of the radiator or intercooler.

Front and Back Clearance 1 inch

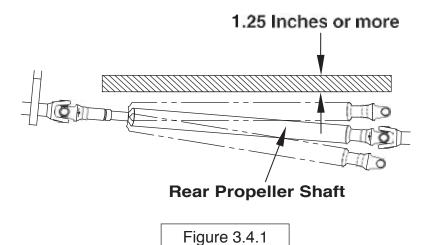

Front and Back Clearance 1 inch

Transmission

The transmission is removed from the rear. Enough clearance must be provided to allow rearward movement of the transmission assembly. Clearance should be sufficient to allow 5 to 6 inches of unrestricted movement of the transmission assembly. In addition, provide at least 2 inches of clearance around the control lever on the side of the transmission to allow free movement without any binding.



At least 2 inches of clearance should be maintained above the automatic transmission to allow for transmission removal.


Front and Center Propeller Shafts

At least 1.25 inches of clearance should be maintained around front and center propeller shafts.

Rear Propeller Shaft

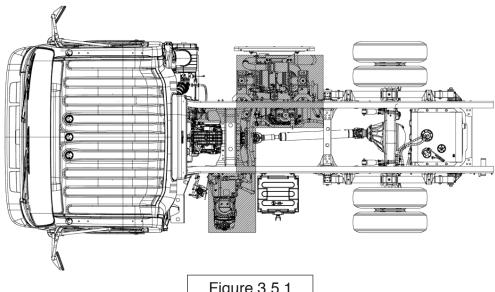
With the rear springs at maximum deflection, at least 1.25 inches of clearance should be provided over the rear propeller shaft.

Exhaust System

The exhaust system has a crucial role in meeting 2010 EPA regulations. In order to maintain compliance with the 2010 EPA emissions levels the Diesel Particulate Filter (DPF) and SCR package must not be moved. The distance between the engine exhaust manifold down pipe and Diesel Particulate Filter (DPF) / Selective Catalytic Reduction Package (SCR) must be maintained and the pressure in the system must be sustained at a constant level. Due to increased temperatures in the exhaust system during the regeneration cycle and the heat stress caused by these temperatures, body builders should closely evaluate the placement of equipment and provide protection to these added components as needed.

Diesel Particulate Filter and Selective Catalytic Reduction (SCR) Restrictions

The DPF/SCR has exhaust pressure pipes and temperature sensors. Care must be taken when a body is installed so as to not damage pipe sensors.


The DPF/SCR should be free from impact or vibration during body installation. The DPF/SCR must have enough room for disassembly of the unit for service and cleaning.

The DPF/SCR switch in the cab should not be removed or disabled. No modification or relocation of the DPF/SCR unit, pressure pipes, and sensor is permitted.

6500XD No Modification Zones

The **DPF/SCR** unit **CANNOT** be modified or moved .

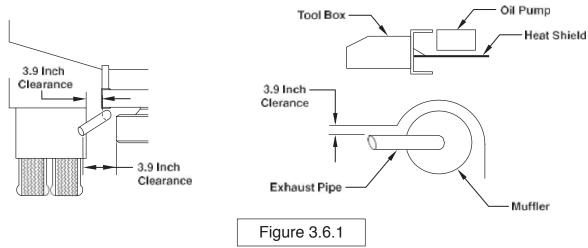
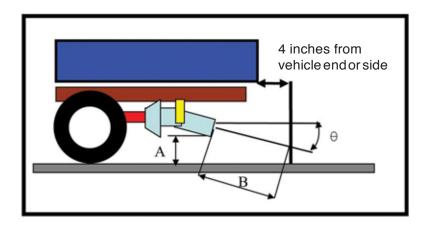

The **DEF** tank and pump **CANNOT** be modified or removed. **DEF** lines and coolant lines **CANNOT** be modified or rerouted.

Figure 3.5.1

EXHAUST CLEARANCES

If flammable materials such as wood are used in the body, provide at least 3.9 inches of clearance between the body and any parts of the exhaust pipe, DPF/SCR Package. If it is impossible to maintain the minimum clearance, use a heat shield. Also use a heat shield if an oil pump or line is located above the exhaust pipe, muffler or catalytic converter.

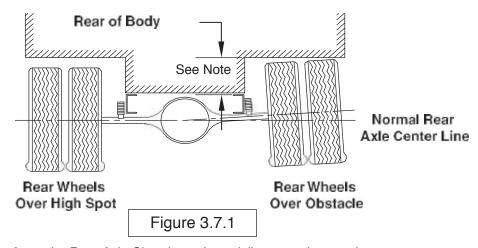

- 1) Clearances around SCR system components must be greater than 1.0 inch at all times to avoid potential contact between the body and the exhaust components. The 1.0 inch allows for thermal expansion and assembly tolerance of the exhaust system. It does not account for dynamic movement in the body due to road conditions and other loads. Body companies are instructed to adjust this 1.0 inch clearance as required to account for body displacement while driving. This guidance does not supersede guidance or exhaust clearances for temperature sensitive or flammable components.
- 2) Exhaust temperatures have not changed since the introduction of DPF in 2007.

Exhaust system surface temperatures During Manual Regeneration

6500XD Modification Guideline (heat issue)

(EXHAUST PIPE HEAT)

During the DPF regeneration cycle, exhaust gas temperatures are hot. Therefore, care should be exercised in placement of the pipe's end location and angle. Do not locate any body parts around the exhaust pipe's end area.



Α	В	Θ
More than	More than	Less than
8 inches	18 inches	45 deg

Figure 3.7.1

Rear Wheel Axle

The design and installation of the body should allow sufficient clearance for full vertical movement of the rear wheels and axle when the vehicle travels over rough or unleveled surfaces.

Note: For recommended clearances, please refer to the Rear Axle Chart in each model's respective section.

Other Clearances

The transmission control cable may be broken if it is bent by or interferes with the body and its fixtures. To prevent this, 1 inch of minimum clearance should be provided. When cable is detached from body mounting, be sure not to bend the cable.

Accessibility to the grease nipple on the rear spring bracket/shackle should be provided so that serviceability with a grease gun is not hampered.

Parts	Minimum Clearance	Location
Brake Hose	6.7 in.	Axle Side
	1.6 in.	Frame Side
Parking Brake Cable	1.2 in.	_
Fuel Hose	1.6 in.	_
Shock Absorber	2.4 in.	Axle Side
	1.2 in.	Frame Side

Figure 3.7.2

3.9

Body Intsallation

Mirrors

The LCF 6500XD chassis will accommodate up to 96 inch wide bodies without modification to the mirror brackets.

The LCF 6500XD chassis will accommodate up to 96 inch wide bodies without modification to the mirror brackets. Bodies from 97 to 102 inches wide will require that the mirror brackets be modified. This Modification can be made at the port and the vehicle order/label will indicate a Regular Product Option of XWL indicating "Mirror Bracket for 102 wide body". The brackets can also be modified by the Chevrolet Dealer or the Body Company by installing mirror brackets ordered from GM Service Parts.

Side Step Door Installation recommendations

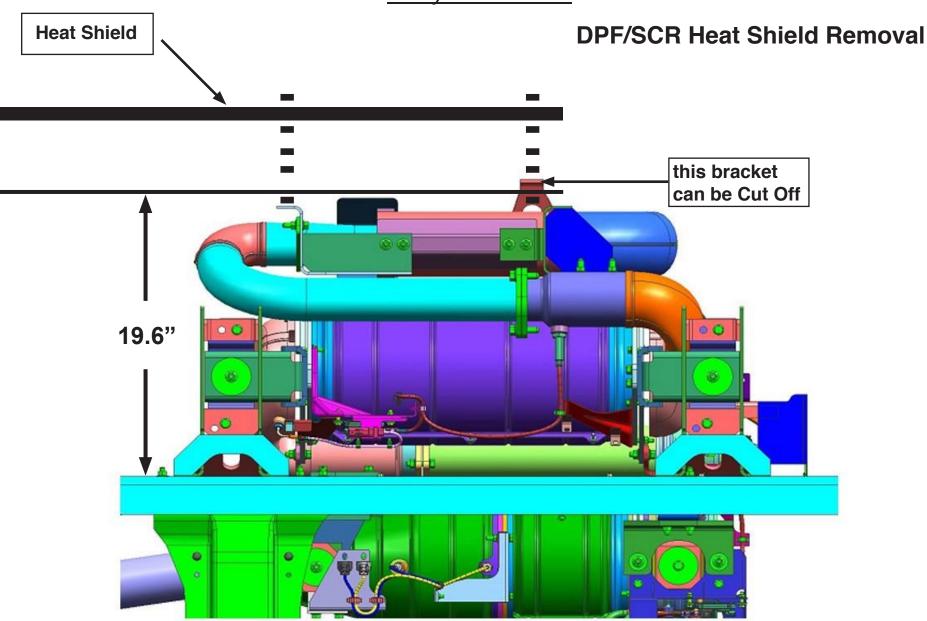
Floor of body should be at least 10" above frame rail (2.5" wood + 4" long sill + 3" cross sill + 1.125" floor)

Forward end plate of step well area can interfere with SCR system

All body components should maintain a minimum 1.0" of clearance to exhaust components UNDER ALL (DYNAMIC) CONDITIONS. (Body company will need to add to this 1.0" clearance to account for flex or movement in the body)

Outer heat shield on SCR system can be removed prior to mounting body if required for clearance Care should be taken to adequately shield exhaust

Driver's side steps can also be accommodated, if door is located behind DEF tank


Battery may have to be relocated, depending on door location

Access hatch for DEF tank fill may have to be added, depending on door location

DPF/SCR Heat shield Removal

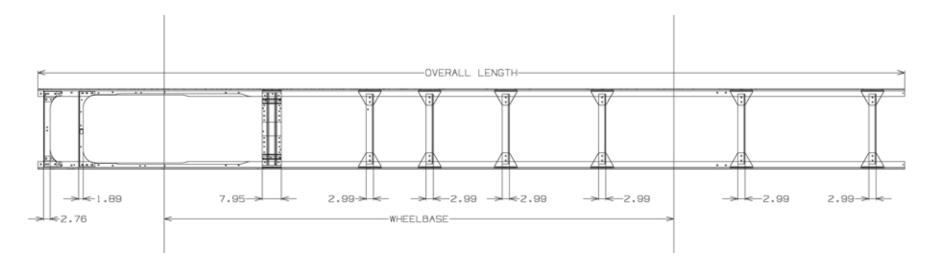
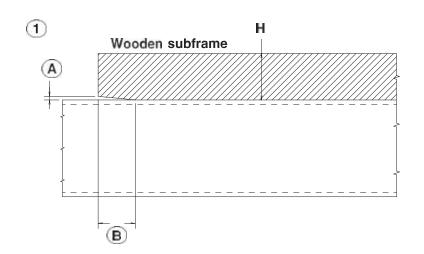
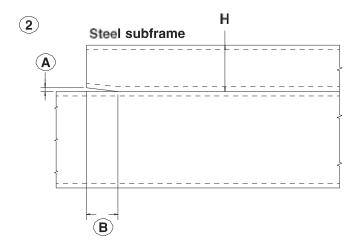
The exhaust external heat shield does not impact vehicle emissions or emissions system durability. This shield can be removed or modified in order to facilitate body or equipment mounting, but the completed vehicle manufacturer should ensure that, when completed, the exhaust will be adequately shielded to prevent unintentional contact with hot exhaust components, and that heat transfer to body components is not so high as to present safety or durability risks. Detailed information on removal of the heat shield can be found in the GM service manual.

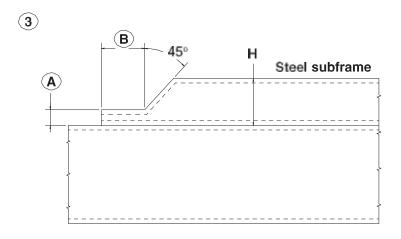
Body Installation

6500XD

Special Equipment on the Chassis

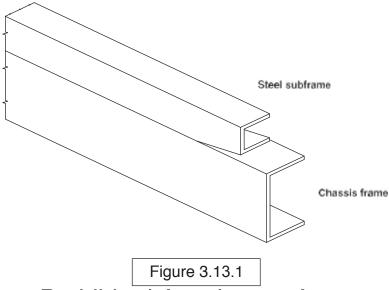
When installing special equipment on the chassis, extra consideration must be given to the weight and construction of the equipment to assure proper distribution of the load. Localization of the load should be prevented. All special equipment should be properly secured into position. We recommend the use of sub frame members when installing special equipment. Sub frame Design and Mounting The sub frame assembly should be mounted as close to the cab as possible. It should be contoured to match the shape and dimensions of the chassis frame as closely as possible.


Figure 3.11.1

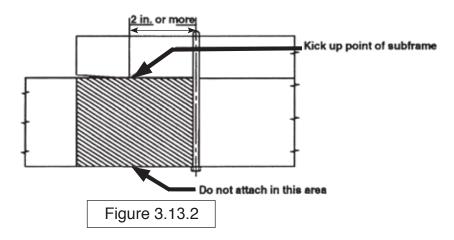
Subframe Contour

Contouring of the front end of the subframe members as shown in the three illustrations below will prevent stresses from being concentrated on certain areas of the chassis frame.



Drawing	А	В
1	0.2 in.	<u>H</u> 2 ~ H
2	0.2 in.	H or more
3	_H_ 3	H or more

Figure 3.12.1


When using a steel subframe, do not close the end of the subframe.

Prohibited Attachment Areas

Do not attach the sub frame with a bolt or bracket to the chassis frame at the points indicated in the following illustrations.

1. At the front end of the subframe. The attaching bolt or bracket must be at least 2 inches behind the kick up point of the subframe.

2. Front U-bolt and Mounting Bracket, Mounting Locations Ahead of Transmission

Mandatory location due to after treatment device location and interior frame components. The chassis will be supplied with one steel crush block in cab for left hand forward body attaching location as illustrated in the drawings below and one body mounting bracket (painted yellow) attached to the right hand frame rail in the location shown in the drawings below. Body Builder will be required to design a mating bracket for attaching the body to the yellow painted chassis body mounting bracket (Ref page 2.16 for illustration of bolt clamping 2 brackets). No U bolt type attaching allowed.

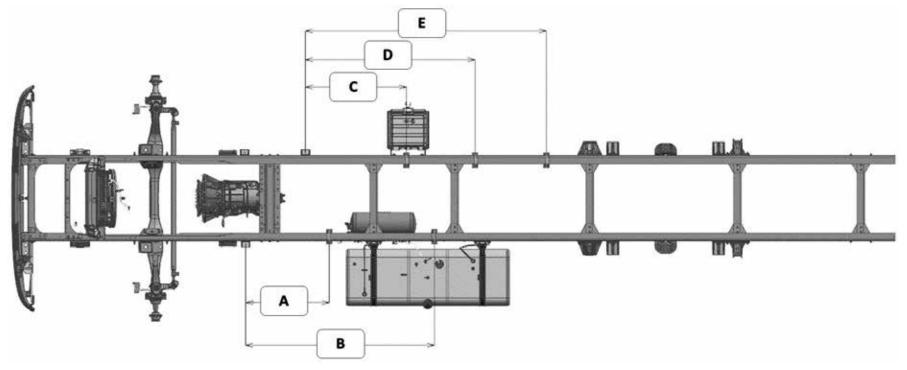
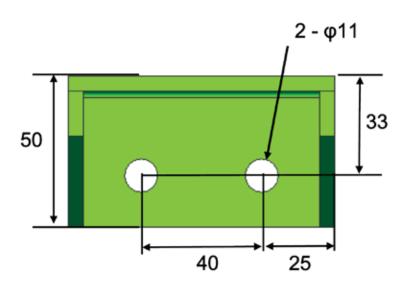
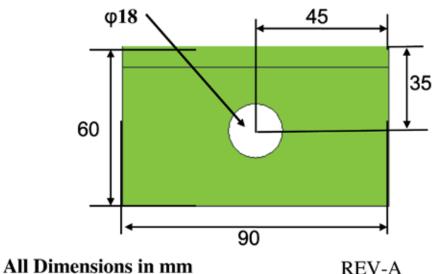




Figure 3.14.1

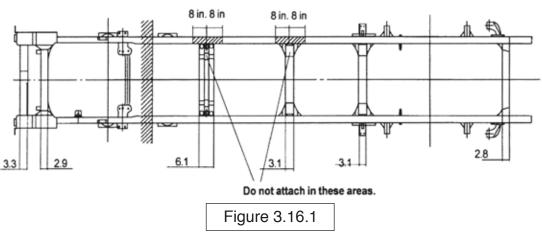
WHEELBASE		UBolt Crush Block Locations (in)												
(in)	Α	В	С	D	E									
152.0	32.8	79.0	39.6	N/A	N/A									
170.0	32.8	N/A	39.6	64.6	N/A									
188.0	32.8	68.9	39.6	59.6	82.5									
200.0	32.8	74.0	39.6	66.5	94.5									
212.0	32.8	82.7	39.6	73.0	106.5									
224.0	32.8	82.7	39.6	85.0	118.5									
236.0	32.8	82.7	39.6	82.3	130.5									
248.0	32.8	82.7	39.6	94.3	142.5									

Body Mounting Bracket Specifications

Material: ASTM A-36 or equivalent
6.35mm (0.25 inch) thick
Coating: OSHA Yellow powder coating
Hardware: Chevrolet supplied, two each
10mm x 30mm hex head bolts
10mm hex nuts
Packaging (two part numbers):
PIO – Poly-Bag; 1 bracket, 2 10mm x 30mm hex head bolts, 2 10mm hex nuts

PDC – Box; 1 bracket, 2 10mm x 30mm hex

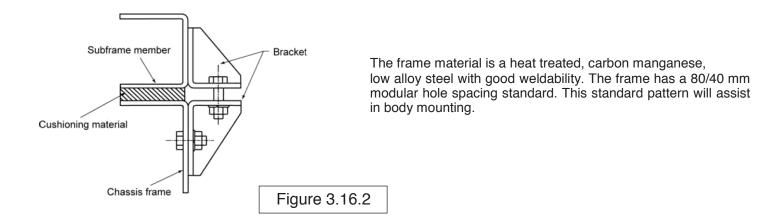
instructions


head bolts, 2 10mm hex nuts, installation

10

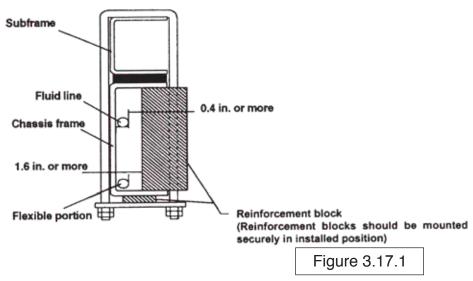
Weld this side only

Figure 3.15.1


Subframe Mounting

Within 8 inches of bends in the chassis frame or the attachment points of any crossmembers.

Bracket Installation


Mounting brackets should be clamped to the chassis frame using bolts. For proper positions in which to install the bolts, refer to the preceding section and the section "Modifications to the Chassis Frame." In addition to the illustrated bracket and U -bolts a shear plate may be required for adequately body mounting. The body company will be responsible for engineering their own mounting system.

U-bolt Installation

When U-bolts are used to retain the subframe, reinforcement blocks must be installed in the frame members. This will prevent distortion of the frame flange as they are tightened. The drawing indicates the correct placement of reinforcement blocks. If you use wood blocks, be sure that there is sufficient clearance between them and any parts of the exhaust system. The use of J-bolts to retain the subframe is strictly prohibited.

If any fluid lines or electric cables are located near the reinforcement blocks, you must provide at least 0.4 inches of clearance between rigid or stationary portions, and at least 1.6 inches between moveable or flexible portions of the lines.

CAUTION:

U-Bolt placement is critical with new emission systems and controls. Extra care must be taken when placing bodies on chassis so as not to damage these components.

For the installation positions of the U-bolts, refer to "Prohibited Attachment Areas."

[₩] 3.18

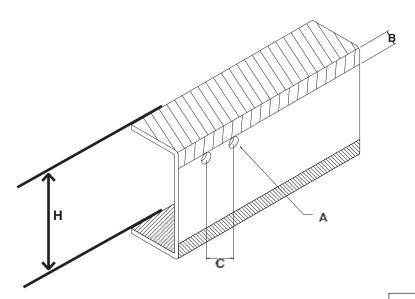
Modification of the Frame

Modifications of the chassis frame should be held to an absolute minimum. Modification work should be performed according to the instructions in the following paragraphs.

When modification is complete, chassis frame members should be carefully inspected to eliminate the possibility of any safety-related defects.

NOTE: PLEASE REFER TO NOTES ON CHASSIS FRAME MODIFICATION WITH ANTILOCK BRAKES.

Working on Chassis frame


The chassis frame is designed and built with consideration for proper load distribution. Sufficient physical strength is provided when the load is evenly distributed. Installation of special equipment on the chassis frame can cause variations in load distribution. If even distribution of load is not kept in mind when the equipment is installed, localization of stresses on specific areas of the frame could cause cracking of the chassis frame members or other problems, even if the total weight of the equipment is within the design limit.

The chassis frame is designed as an integral unit. Therefore, we do not recommend cutting the chassis frame under any circumstances.

Drilling and Welding

IMPORTANT NOTE: For vehicles equipped with electronic engines and or electronic or hydra-matic transmissions, electric arc welding must be done with the negative battery cable disconnected.

- 1. Do not drill or weld in the shaded portions of the chassis frame members. Do not weld within 0.8 inches from the edges of any existing holes. (Ref. page 2.20)
- 2. Hold the length of any welding beads within 1.2-2.0 inches. Allow at least 1.6 inches between adjacent welding beads.
- 3. All holes must be drilled. Do not use a torch to make any holes.
- 4. All riveting must be done with cold rivets. Do not use hot rivets.
- 5. The flange of the chassis frame must not be cut under any circumstances.
- 6. The subframe must be attached to the chassis frame with bolts. Do not weld.
- 7. Repaint exposed metal after drilling.

Dimensions:

A - no more than 0.59 inches in diameter

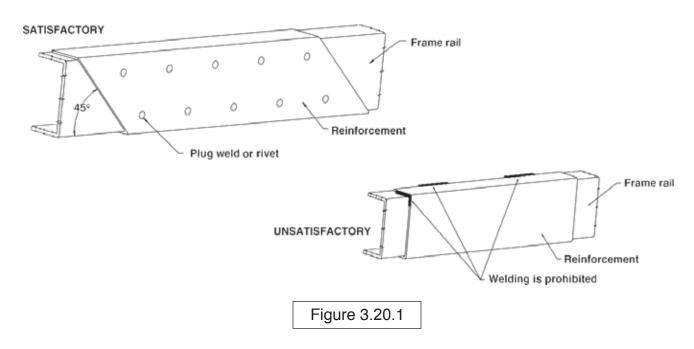
B - must be more than H/5 for welding and H/7 for holes

C - must be more than 1.57 inches

H = Frame Height

Figure 3.19.1

Reinforcement of Chassis Frame


Reinforcements must be installed to prevent the considerable variation in the section modulus. They must be welded so as to avoid localized stresses.

The frame of the 6500XD is made of SAPH440 mild steel.

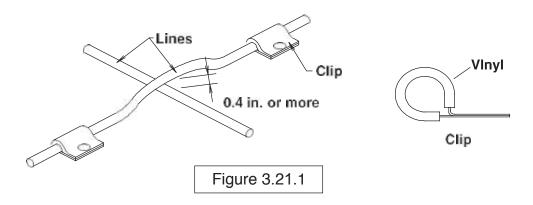
The drawing on the following page illustrates correct and incorrect methods of frame reinforcement.

Welding

- 1. Keep reinforcement plates and chassis frame free from moisture and water.
- 2. Avoid cooling with water after welding.
- 3. Use a suitable means to protect pipes, wires, rubber parts, leaf springs, etc. against heat and effect of sputtering.
- 4. Remove fuel tank assembly when welding portions near the fuel tank.
- 5. Remove coat of paint completely when welding painted areas. Repaint exposed metal after welding.

Fluid Lines

Do not disturb the layout of any brake lines or fuel lines unless absolutely necessary. When modification is needed, follow the instructions below carefully to ensure safety. Brake fluid lines must not be cut and spliced under any circumstances. We do not recommend the cutting or splicing of any fuel lines, but if it is absolutely necessary, be sure that the correct fitting and tools are used to form the joint, and then pressure test the joint. Steel lines are metric sizes.


Preparation of Additional Lines

- 1. Where possible, use only genuine Chevrolet lines as supplied by authorized Chevrolet dealers.
- 2. Use the correct metric flaring and bending tools to form the lines.
- 3. Avoid repeated bending. Do not use heat for flaring and bending the lines. Before and after forming the new lines, examine them carefully for scratches, distortion, dents and the presence of any foreign matter.

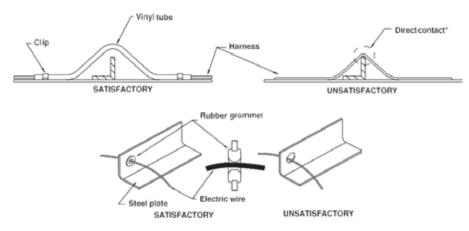
Installation of Additional Lines

Install new lines away from adjacent parts and away from any sources of heat.

- 1. A minimum clearance of 0.4 inches must be maintained between lines. Where necessary, clip the lines into position in order to maintain this minimum clearance.
- 2. Minimize any crossing between lines. If a crossing is unavoidable, use the following procedure:
 - a. At least 0.4 inches of clearance should be maintained between lines at the crossing point.
 - b. If the 0.4 inches of clearance cannot be maintained, or if the lines are subject to vibration, clip them securely.
- 3. Plan the bends and clipping points of the lines to minimize vibration and the resulting fatigue.
- 4. Use rust-proofed clips and apply vinyl coating to the portions of the lines to be clipped.
- 5. Install new lines in positions where they are protected against water, dirt, grit, sand, rocks and other foreign matter that can come from above or below, or can be flung up by the wheels.

Electrical Wiring and Harnessing

To increase the reliability of the wiring, all frame harnesses are covered with corrugated vinyl tubing. The following instructions apply to extending or modifying these harnesses. See the Electrical Section for information on commonly used circuits in the Chevrolet LCF trucks.


Wiring

- 1. Most wiring connections on LCF vehicles are made with terminals. We recommend the use of terminals when splicing cables and wires.
- 2. When splicing, use new wire of the same gauge, and do not make splices inside the corrugated tubing.
- 3. When making connections to the end of the harness, make sure the connections are electrically perfect. Use insulating tape as needed to prevent the entry of water, which results in short circuits and/or corrosion.
- 4. When making new circuits, or modifying circuits already installed, make the cables only just taut enough to remove any slack. Use clips or grommets where required to protect cables from heat or sharp edges. When cables must run near the exhaust system, see the instructions in the "Exhaust System" section.
- 5. Always use rustproof clips, and apply vinyl coating to that portion of the clips in direct contact with the harnesses. No scotch clips or connectors.
- 6. To minimize the vibration of the harness, clipping points should be set up according to the table.

Harness Diameter	Clip Distance
less than 0.2 in.	less than 11.8 in.
0.2 in. ~ 0.4 in.	approx. 15.7 in.
0.4 in. ~ 0.8 in.	approx. 19.7 in.

Figure 3.22.1

- 7. When changing the length of the battery cable, do not cut or splice the existing cable. Make up a new cable of the correct length and wire gauge for the load and distance, without splices.
- 8. When using connectors, use a socket (female) connector on the electrical source side and a plug (male) connector on the electrical load side to lower the possibility of a short circuit when disconnected.
- 9. When connecting cables to moving or vibrating parts such as the engine or transmission, be sure to maintain sufficient slack in the wiring to absorb the vibration. Follow the example of existing cables connected by Chevrolet LCF. Keep flexible cables clear of other parts.
- 10. Do not use vinyl tape in the engine compartment. The heat will tend to make it peel off. Use plated steel clips coated with rubber or vinyl.
- 11. When locating auxiliary equipment or lines near the ECM caution should be used in order to protect the ECM from excessive vibration, heat or chemical reactions.

* Cables should not be in contact with sharp edges or pierced holes.

- * Harriesses should not be installed on inside lower face of the chassis frame.
- * Harriesses should not be taped to fuel lines or other lines. A sufficient clearance should be maintained between harness and pipe lines.

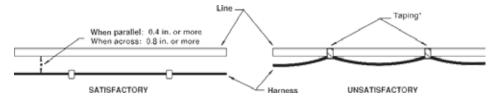


Figure 3.23.1

₹ 3.24

Wire Color Code

The electrical circuits of the 6500XD Chassis Cab are connected with low-voltage stranded wire for automotive applications. The color coding standards are as follows for the 6500XD Chassis Cab:

(1) BlackBStarter circuits and grounds(5) YellowYInstrument circuit(2) WhiteWGenerator (alternator) circuit(6) BrownBrAccessory circuit(3) RedRLighting circuit(7) Light GreenLgOther circuit

(4) Green G Signal circuit (8) Blue L Windshield wiper motor circuit

Maximum Allowable Current

Harness Design Diameter (mm)	AWG Equivalent	No. of Wires/Wire Diameter (mm)	Cross Sectional Area (mm2)	Maximum Allowable Current (Amps)
100	00	217/0.80	109.1	363
85	0	169/0.80	84.96	305
60	1	127/0.80	63.84	248
50	1	108/0.80	54.29	223
40	1	85/0.80	42.73	191
30	2	70/0.80	35.19	171
20	4	41/0.80	20.61	123
15	6	84/0.45	13.36	93
8	8	50/0.45	7.952	68
5	8	65/0.32	5.228	51
3	12	41/0.32	3.297	39
2	14	26/0.32	2.091	29
1.25	16	16/0.32	1.287	21
0.85	18	11/0.32	0.8846	17
0.5	20	7/0.32	0.5629	13

Reference: The values given in the "maximum allowable current" column are based on the ambient temperature condition of 104°F with temperature increase of 104°F.

Figure 3.24.1

Electrical System Modifications

Modifications/add-on wiring must be carefully reviewed to ensure compatibility with the base vehicle wiring by reviewing system schematics, wire routing paths, harness connections, etc. Due to the wide range of modifications that may be required for vocational needs, it is not feasible for the O.E.M. to take into account all potential revisions. For this reason, any person modifying existing vehicle wiring must assume responsibility that the revisions have not degraded the electrical system performance. Any add-on wiring needs to be properly fused and routed to prevent cut, pinch, and chafe problems, as well as avoid exposure to excessive heat. Care must be exercised that existing vehicle interfaces do not have their current load capabilities exceeded, and that the respective control devices are not overloaded. Added wire size should be at least as large as the wire to which it is attaching in order for fuse protection to be maintained

A Packard electric wiring repair kit is available through Kent-Moore (P/N J38125-B) (Phone # 1-800-345-2233). This kit contains instructions, tools and components for making repairs to wiring harness components. This kit would also greatly assist in accomplishing necessary add-on wiring such as body marker lamps, so that system reliability/durability is maintained.

Electrical wiring components can be obtained through your authorized Chevrolet dealers. Packard Electric components are also available through Power and Signal (www.powerandsignal.com). Power and Signal may also be able to assist in making necessary wiring additions by providing custom wiring stubs or jumpers to your specifications.

Caution: Before servicing any electrical component, the ignition key must be in the LOCK position and all electrical loads must be OFF, unless instructed otherwise in Chevrolet service procedures. If a tool or equipment could easily come in contact with a live exposed electrical terminal, also disconnect the negative battery cable. Do not disconnect cable within 3 minutes after turning the ignition key to the Lock position. Failure to follow these precautions may cause personal injury and/or damage to the vehicle or its components.

Exhaust System

Modification of the exhaust system should be avoided. If modifications are absolutely necessary, the following points should be maintained.

1. Maintain the clearance specified in the "Exhaust System" table between all parts of the exhaust system and any fuel lines, brake lines, brake hoses, electrical cables, etc. The exhaust outlet should not point toward any of these parts.

	Clearance
Brake lines	2.4 in. or more. (If the combined section of a group of parallel brake lines is more than 7.8 in., a clearance of 7 in. or more
	should be provided.)
Flexible brake hoses	7.8 in. or more. (The temperature of flexible brake hoses should not exceed 158°F. If the highest temperature is not
	measurable, a clearance of more than 15.7 in. should be maintained between the hoses and the exhaust system.)
Wiring harnesses and cables	7.8 in. or more. (The temperature of flexible brake hoses should not exceed 158°F. If the highest temperature is not
	measurable, a clearance of more than 15.7 in. should be maintained between the hoses and the exhaust system.)
Steel fuel lines	3.1 in. or more.
Rubber or vinyl fuel hoses	5.9 in. or more.

Figure 3.25.1

- 2. If a tool box is installed, it should preferably be made from steel. If a wooden tool box is installed, at least 7.8 inches of clearance should be maintained between the tool box and any parts of the exhaust system.
- 3. If the exhaust system is modified, it is the responsibility of those making the modification to ensure that the noise level meets appropriate standards.
- 4. If the exhaust system is modified it is the responsibility of those making the modification to ensure that the emission levels meet appropriate standards.

Fuel System

Relocation of the fuel tank, or installation of additional fuel tanks, is not recommended. If modifications to the fuel system are unavoidable, follow these recommendations:

- 1. Maintain adequate clearance between the fuel tank and any other device or structure.
- 2. Do not connect any additional fuel hose.

Rear Lighting

Brackets installed are temporary. Please do not use these brackets for body installation.

Serviceability

No matter what other modifications or changes are made, access to components requiring daily preventive maintenance or other routine service must not be obstructed. This includes:

- 1. Inspection, filling and draining of engine oil and cooling water.
- 2. Inspection, filling and draining of transmission fluid.
- 3. Adjustment, removal and installation of the fan belts.
- 4. Inspection, filling and removal of the battery and battery cover.
- 5. Maintenance of clearance for tightening of check bolt on brake safety cylinder.
- 6. Operation of the spare tire carrier, including mounting and dismounting of the spare tire.

3.27

Wheelbase Alteration

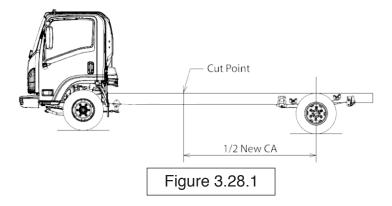
With certain applications, it may become necessary to alter the wheelbase of the chassis. The next two sections provide the suggested guidelines for accomplishing either shortening or lengthening of the wheelbase.

Shortening/Lengthening the Wheelbase Without Altering the Frame

Since the frame is an integral part of the chassis, it is recommended that the frame not be cut if it is possible to avoid it. When shortening/lengthening the wheelbase on some models, it is possible to do so without cutting the frame. This is possible on models which have a straight frame rail. If the chassis does not have a straight frame rail, it may still be necessary to cut the frame. For instructions on shortening/lengthening these chassis, refer to the "Altering the Wheelbase by Altering the Frame" section of this book. Otherwise, the wheelbase may be shortened/lengthened by removing the rear suspension, drilling new suspension mounting holes at the appropriate spot in the frame, and sliding the rear suspension, suspension liner, and suspension crossmembers forward or aft.

The suspension and suspension crossmembers' rivet holes left in the frame rail flange must be filled with GRADE 8 bolts and hardened steel washers at both the bolt head and nut, HUC bolts or GRADE 8 flanged bolts and hardened steel washers at the nut. When shortening/lengthening the wheelbase in this manner, the following guidelines must be adhered to:

- 1. All frame drilling must comply with the DRILLING AND WELDING section of this book.
- 2. All rivet holes left in the frame rail flange from the suspension and suspension crossmembers must be either filled with GRADE 8 bolts and hardened steel washers at both the bolt head and nut, HUC bolts or GRADE 8 flanged bolts and hardened steel washers at the nut.
- 3. The components required to be slid forward or aft are the suspension and suspension hangers, suspension crossmembers and suspension frame liner.


Altering the Wheelbase by Altering the Frame

Even on a straight frame rail, it may be desirable to cut the frame and lengthen or shorten the wheelbase rather than simply sliding the rear suspension back or forward. The following section offers some guidelines and suggestions for cutting and lengthening or shortening the frame.

Glossary of Terms - Chassis Wheelbase Alteration

- CA Length from back-of-cab to rear axle centerline in inches.
- AL Added length (in case of a lengthened wheelbase). Difference between WB (new) and WB (old).
- SL Shortened length (in case of shortened wheelbase). Difference between WB (old) and WB (new).

- 1. Determine the added length (AL) or shortened length (SL) required to lengthen or shorten chassis. (For added wheelbase: New CA = CA + AL; For shortened wheelbase: New CA = CA SL.)
- 2. Obtain the material to be used as the insert for the lengthened wheelbase in the correct length (AL). The insert must have the same cross sectional dimensions and yield strength as the original frame rail.
- 3. Divide the new CA by two (2). Measure (new CA)/2 from the center of the rear axle forward and mark this point on the chassis frame (see figure below).

4. Cut the chassis frame at this point. If the wheelbase is to be lengthened, addition of the previously obtained insert (of length AL determined in step 1) will be made at this time. If the wheelbase is to be shortened, measure the distance (SL) forward of this cut and remove a length (SL) section from the chassis frame (see figure below). Insure that an adequate area on the frame remains for the required addition of the necessary reinforcements. These are the only suggested places for cutting the frame and reinforcements.

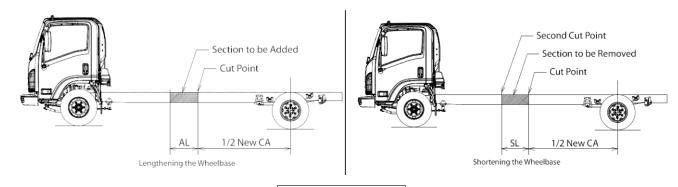
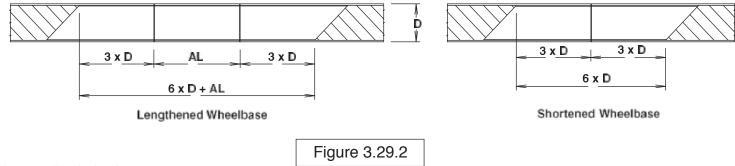


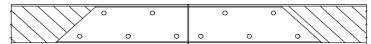
Figure 3.28.2


5. When welding the insert (length AL for wheelbase lengthening) to the original frame rail, a continuous butt weld must be used at the splices. When shortening the wheelbase, weld the ends of the chassis frame together with a continuous butt weld over the junction of the frame ends. Weld can be both the inside and outside of the frame rails using welding techniques prescribed by established welding standards (ref. SAE J1147) and in accordance with this guide. An example of this weld is shown below.

6. Determine the appropriate additional internal reinforcements which are required using this equation:

Reinforcement Length = AL + 6x (original frame rail web depth).


The figure below shows how this reinforcement is to be placed over the extended or shortened section of the frame rail.


D = Original frame rail web depth

The suggested cross section of this reinforcement is a snug fit inner channel. If the new wheelbase exceeds the upper limit of the optional wheelbases of this model, i.e.; a "long bridge", it may be necessary to use an "inverted L" reinforcement in addition to the snug fit channel reinforcement (see figures on next page). Application Engineering should be consulted for approval of such cases. It should be noted that these methods of reinforcements, and any other methods which may be used, require a 45° angled cut at both ends to avoid stress concentrations in the frame (note the figures under item 7).

3.30

7. The reinforcements must be fastened securely to only the web of the original chassis frame rail. The reinforcement must be held rigidly in place using either HUC bolts, GRADE 8 bolts and hardened steel washers at both the bolt head and nut, or GRADE 8 flanged bolts and hardened steel washers at the nut. Below are some suggested bolt patterns. It should be noted that these bolt patterns must not align the bolts vertically, i.e.: the bolt pattern must be staggered.



Figure 3.30.2

- 8. Lengthening the frame will also require extending the brake lines, basic chassis electrical harness. It is recommended that the original brake lines be removed and replaced with brake lines of the same diameter as the original lines and of the appropriate length. The extended ABS brake lines must be supported back to the frame to prevent vibration. The electrical harness must be extended in accordance with the ELECTRICAL WIRING AND HARNESSING section of this book.
- 9. The propeller shafts' overall length will also need to be lengthened or shortened. If the extension is within the limits of the optional wheelbases of the respective model, the exact propeller shaft lengths and angles are given on or about Page 12 of the respective sections of this book. If the modified wheelbase exceeds the optional wheelbases of the respective model, the following guidelines must be adhered to:

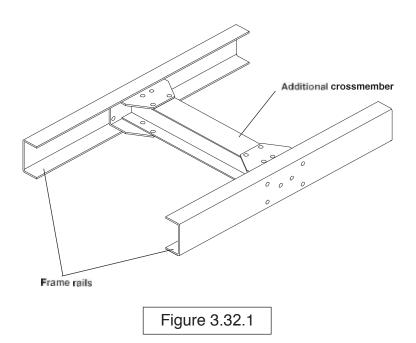
a. Propeller Shaft Length

The maximum propeller shaft lengths (pin to pin) for the respective models are shown in the table below.

ENGINE	DIESEL
Model	6500XD
Propeller Shaft Diameter (in.)	4.0
Maximum Propeller Shaft Length (in.)	67.9

Figure 3.31.1

b. Propeller Shaft Angles

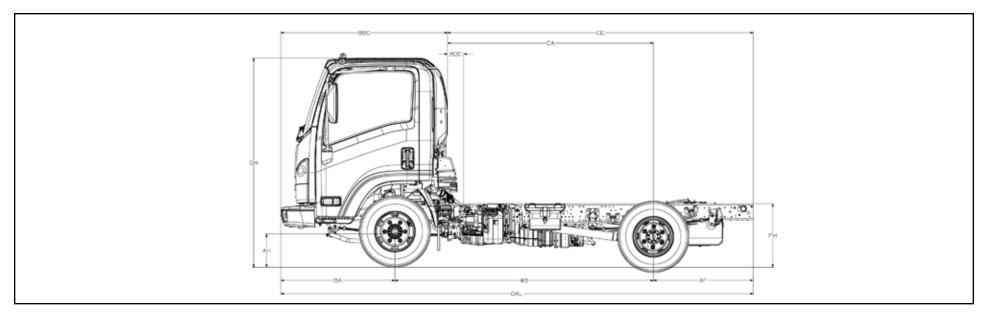

The maximum propeller shaft angles, with respect to the previous shaft, are shown in the table below.

ENGINE	DIESEL
Model	6500XD
Maximum Propeller Shaft Angle	3.4°

Figure3.31.2

- c. The propeller shaft angles must be designed such that the angles will cancel to avoid propeller shaft whip.
- d. The propeller shaft yokes must be assembled such that the propeller shaft yokes are "in phase."
- 10. Extending the frame will also require relocation and/or addition of crossmembers. If the extension is within the limits of the optional wheelbases of the respective model, the exact crossmember locations and dimensions are given in the respective model sections of this book. If the modified wheelbase exceeds the optional wheelbases of the respective model, the following guidelines must be adhered to:
 - a. The crossmember location will largely be determined by the propeller shaft lengths and where the center carrier bearing locations are for the propeller shaft assembly.
 - b. A crossmember must be located at the front and rear spring hangers of the rear suspension (refer to the appropriate section of this book to see where these suspension crossmembers are to be located).
 - c. The crossmember must be constructed such that it supports both the upper and lower flange on each frame rail (see drawing on next page).

 A crossmember such as the one on the next page may be constructed, or LCF crossmembers may be obtained from your Chevrolet parts dealer.


d. The maximum distance between crossmembers for the respective models is given in the table below.

ENGINE	DIESEL
Model	6500XD
Maximum Distance Between Crossmemebers (in.)	35.7

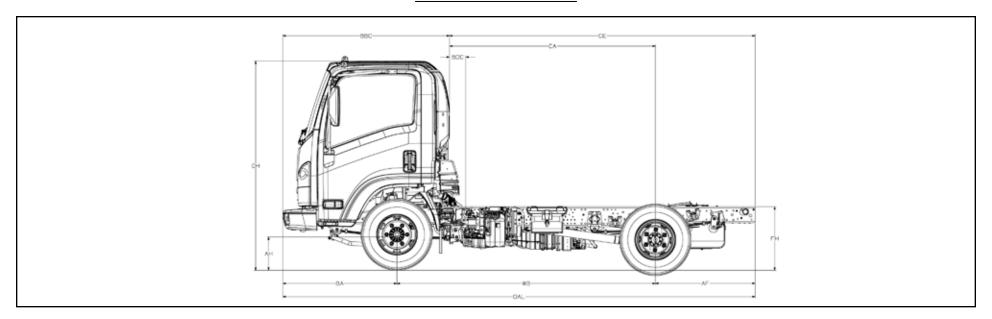
Figure 3.32.2

- e. The drilling for any additional holes in the frame rails must comply with the DRILLING AND WELDING section of this book.
- 11. All other aspects of lengthening or shortening the wheelbase must comply with the applicable section of this Body Builder's Guide.
- 12. Please contact applications engineering for guidelines on 6500XD CHASSIS frame modifications when the vehicle is equipped with an Antilock Brake System.

3500, 4500, Gas

- Body & Payload Weight Distribution (% Front/% Rear)

Model	GVWR	WB	CA	CE	OAL	вос	10 ft.	12 ft.	14 ft.	16 ft.	18 ft.	20 ft.	22 ft.	24 ft.
AUTOMATIC TRANSMISSION														
3500 GAS	12,000	109	86.5	129.6	200.5	6.5	18/82	7/93						
3500 GAS	12,000	132.5	110	153.1	224	6.5			15/85					
3500 GAS	12,000	150	127.5	170.6	241.5	6.5				17/83	9/91			
3500 GAS	12,000	176	153.5	196.6	267.5	6.5						15/85		


Model	GVWR	WB	CA	CE	OAL	вос	10 ft.	12 ft.	14 ft.	16 ft.	18 ft.	20 ft.	22 ft.	24 ft.
AUTOMATIC TRANSMISSION														
4500 GAS	14,500	109	86.5	129.6	200.5	6.5	18/82	7/93						
4500 GAS	14,500	132.5	110	153.1	224	6.5			15/85					
4500 GAS	14,500	150	127.5	170.6	241.5	6.5				17/83	9/91			
4500 GAS	14,500	176	153.5	196.6	267.5	6.5						15/85		

IMPORTANT:

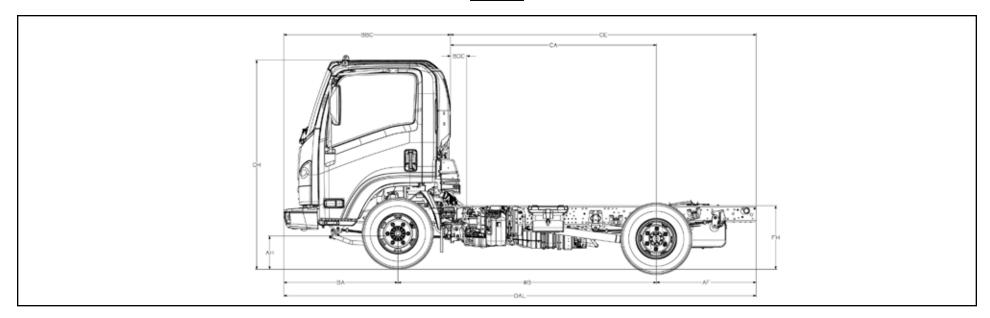
Weight distribution percentages listed do not include added accessories, liftgate or refrigeration units. Percentages based on water-level distribution of body and payload weight which is determined by subtracting chassis wet weight (including 200 lb. driver) from GVWR. These tables are intended for reference and do not preclude the necessity for an accurate weight distribution calculation.

8 3.34

3500HD Diesel

- Body & Payload Weight Distribution (% Front/% Rear)

AUTOMATIC TRANSMISSION


MODEL	GVWR	WB	CA	CE	OAL	BOC	10	12	14	16	18	20	
3500HD Diesel	13,000	109	86.5	129.6	200.5	4.5	17/83	6/94					
3500HD Diesel	13,000	132.5	110	153.1	224.0	4.5			14/86				
3500HD Diesel	13,000	150	127.5	170.6	241.5	4.5				16/84	8/92		
3500HD Diesel	13,000	176	153.5	196.6	267.5	4.5						15/85	

IMPORTANT:

Weight distribution percentages listed do not include added accessories, liftgate or refrigeration units. Percentages based on water-level distribution of body and payload weight which is determined by subtracting chassis wet weight (including 200 lb. driver) from GVWR. These tables are intended for reference and do not preclude the necessity for an accurate weight distribution calculation.

₹ 3.35

4500

- Body & Payload Weight Distribution (% Front/% Rear)

AUTOMATIC TRANSMISSION

MODEL	GVWR	WB	CA	CE	OAL	BOC	10	12	14	16	18		
4500	14,500	109	86.5	129.6	200.5	7.7		6/94					
4500	14,500	132.5	110	153.1	224.0	7.7			14/86				
4500	14,500	150	127.5	170.6	241.5	10.2				14/86	6/94		
4500	14,500	176	153.5	196.6	267.5	10.2						13/87	

IMPORTANT:

Weight distribution percentages listed do not include added accessories, liftgate or refrigeration units. Percentages based on water-level distribution of body and payload weight which is determined by subtracting chassis wet weight (including 200 lb. driver) from GVWR. These tables are intended for reference and do not preclude the necessity for an accurate weight distribution calculation.

∜ 3.36

4500XD Diesel

AUTOMATIC TRANSMISSION

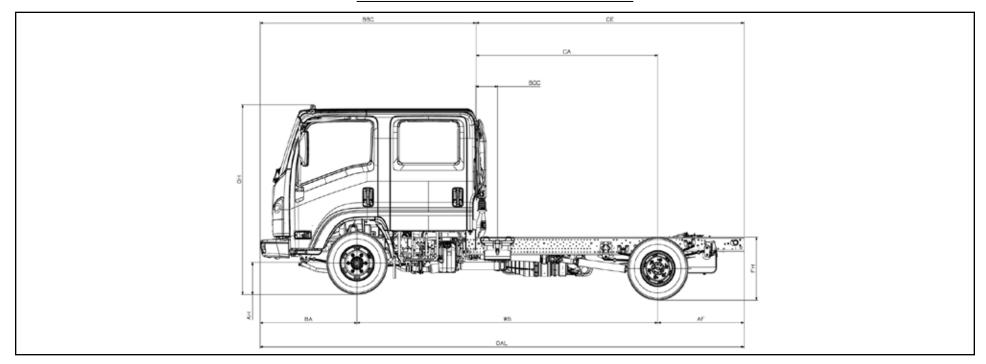
MODEL	GVWR	WB	CA	CE	OAL	BOC	10	12	14	16	18	20	22	
4500XD DIESEL	16,000	109	86.5	129.6	200.5	7.7	17/83	6/94						,
4500XD DIESEL	16,000	132.5	110.0	153.1	224.0	7.7			14/86					
4500XD DIESEL	16,000	150	127.5	170.6	241.5	7.7				16/84	8/92			
4500XD DIESEL	16,000	176	153.5	196.6	267.5	7.7					22/78	15/85		

5500HD Diesel

AUTOMATIC TRANSMISSION

MODEL	GVWR	WB	CA	CE	OAL	BOC	10	12	14	16	18	20	22	
5500HD DIESEL	17,950	109	86.5	129.6	200.5	7.7	17/83	6/94						
5500HD DIESEL	17,950	132.5	110.0	153.1	224.0	7.7			14/86					
5500HD DIESEL	17,950	150	127.5	170.6	241.5	7.7				16/84	8/92			
5500HD DIESEL	17,950	176	153.5	196.6	267.5	7.7					22/78	15/85		
5500HD DIESEL	17,950	200	177.5	220.6	291.5	7.7							19/81	

5500XD Diesel

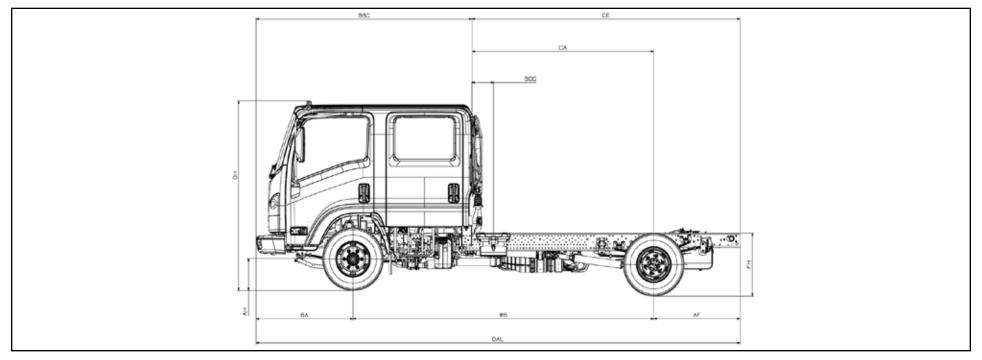

AUTOMATIC TRANSMISSION

MODEL	GVWR	WB	CA	CE	OAL	BOC	10	12	14	16	18	20	22	24
5500XD DIESEL	19,500	109	86.5	129.6	200.5	7.7	17/83	6/94						
5500XD DIESEL	19,500	132.5	110.0	153.1	224.0	7.7		23/77	14/86					
5500XD DIESEL	19,500	150	127.5	170.6	241.5	7.7				16/84	8/92			
5500XD DIESEL	19,500	176	153.5	196.6	267.5	7.7					22/78	15/85		
5500XD DIESEL	19,500	200	177.5	220.6	291.5	7.7							19/81	
5500XD DIESEL	19,500	212	189.5	232.6	303.5	7.7								18/82

IMPORTANT:

Weight distribution percentages listed do not include added accessories, liftgate or refrigeration units. Percentages based on water-level distribution of body and payload weight which is determined by subtracting chassis wet weight (including 200 lb. driver) from GVWR. These tables are intended for reference and do not preclude the necessity for an accurate weight distribution calculation.

3500/4500 Crew Cab Gas


- Gas Cab Body & Payload Weight Distribution (% Front/% Rear)

Crew Cab Gas Engine										
MODEL	GVWR	WB	CA	CE	OAL	вос	10	12	14	16
3500 CREW CAB GAS	12,000	150	88.9	132	241.5	4.0		8/92		
3500 CREW CAB GAS	12,000	176	114.9	158	267.5	4.0			15/85	
		=							1	
MODEL	GVWR	WB	CA	CE	OAL	BOC	10	12	14	16
4500 CREW CAB GAS	14,500	150	88.9	132	241.5	4.0	16/84	8/92		
4500 CREW CAB GAS	14,500	176	114.9	158	267.5	4.0			15/85	8/92

IMPORTANT:

Weight distribution percentages listed do not include added accessories, liftgate or refrigeration units. Percentages based on water-level distribution of body and payload weight which is determined by subtracting chassis wet weight (including 200 lb. driver) from GVWR. These tables are intended for reference and do not preclude the necessity for an accurate weight distribution calculation.

4500HD, 4500XD, 5500HD Crew Cab Diesel

- Diesel Crew Cab Body & Payload Weight Distribution (% Front/% Rear)

Crew Cab Diesel Engir	ne									
MODEL	GVWR	WB	CA	CE	OAL	вос	10	12	14	16
4500HD CREW CAB DSL	14,500	150	88.5	131.6	241.5	5.3				
4500HD CREW CAB DSL	14,500	176	114.5	157.6	267.5	5.3			14/86	7/93
			-			-	-	-	-	
MODEL	GVWR	WB	CA	CE	OAL	вос	10	12	14	16
4500XD CREW CAB DSL	16,000	150	88.5	131.6	241.5	5.3		7/93		
4500XD CREW CAB DSL	16,000	176	114.5	157.6	267.5	5.3			14/86	7/93
	•		•				•			
MODEL	GVWR	WB	CA	CE	OAL	вос	10	12	14	16
5500HD CREW CAB DSL	17,950	150	88.5	131.6	241.5	5.3	15/85	7/93		•
5500HD CREW CAB DSL	17,950	176	114.5	157.6	267.5	5.3			14/86	7/93

IMPORTANT:

Weight distribution percentages listed do not include added accessories, liftgate or refrigeration units. Percentages based on water-level distribution of body and payload weight which is determined by subtracting chassis wet weight (including 200 lb. driver) from GVWR. These tables are intended for reference and do not preclude the necessity for an accurate weight distribution calculation.

MECHANICAL AND CAB SPECIFICATIONS Engine Horsepower and Torque Chart

ENGINE MODEL	VEHICLE MODEL	VEHICLE MODEL Net HP Net T HP/RPM LBS-F1		Gross HP HP/RPM ¹	Gross Torque LBS FT/RPM					
AUTOMATIC TRANSMISSION										
GMPT - 6.0L - V8	3500, 4500 Gas	293/4300	368/4000	297/4300	372/4000					
ISUZU 4JJ1-TC	3500HD Diesel	147/2700	277/1600-2800	150/2800	282/1600-2800					
ISUZU 4HK1-TC	4500HD, 4500XD, 5500HD, 5500XD	210/2500	441/1850	215/2500	452/1850					

Figure 4.1.1

Governed 4JJ1-TC 3600rpm

NOTE: Horsepower and Torque Ratings are measured under SAE J1349 standards.

The following table presents GVW ratings and corresponding GCW ratings for each model truck

GVW/GCW Ratings

Truck Model	Transmission	GVWR(lbs.)	GCWR (lbs.)1
3500 GAS	AUTOMATIC	12,000	18,000
4500 GAS	AUTOMATIC	14,500	20,500
3500HD DIESEL	AUTOMATIC	13,000	19,000
4500HD DIESEL	AUTOMATIC	14,500	20,500
4500XD DIESEL	AUTOMATIC	16,000	22,000
5500HD DIESEL	AUTOMATIC	17,950	23,950
5500XD DIESEL	AUTOMATIC	19,500	25,500

Figure 4.1.2

¹ The Chevrolet Gas/Diesel engines are not approved for Hot Shot applications.

4.2

Rear Frame Height Chart

The following table provides the rear frame height for each model/GVWR with standard tires:

Model	GVWR(lbs.)	Standard Tire	Frame HT (in.) FH Std. Tires
3500 Gas	12,000	215/85R-16E	31.1
4500 Gas	14,500	225/70R-19.5G	33.0
3500HD Diesel	13,000	215/85R-16E	31.1
4500HD Diesel	14,500	215/85R-16E	31.1
4500XD Diesel	16,000	225/70R-19.5F	33.0
5500HD Diesel	17,950	225/70R-19.5F	33.0
5500XD Diesel	19,500	225/70R-19.5F	33.0

Figure 4.2.1

4.21

BODY APPLICATION SUMMARY CHART

6500XD MODELS

RPO CODE	GVWR	WB	вос	14 ft.	16 ft.	18 ft.	20 ft.	22 ft.	24 ft.	26 ft.	28 ft.	30 ft.
EG9		152		Х	х							
EH8		170				Х						
EK3		188					Х					
EM2	25,950	200	3.0					х				
EL5	23,930	212	3.0						Х			
EK6		224								Х		
EG7		236									х	
ES5		248										х

Figure 4.21.1

Paint Code Chart

EXTERIOR PAINT CODE INFORMATION

GM Ordering Color Name Exterior	AKZO NOBEL CODE	DUPONT CODE	NEXA COLOR CODE	PPG CODE	SHERWIN WILLIAMS/ MARTIN SENOUR	SPIES HECKER CODE	STANDOX CODE	PANTONE (1)
White	FLNA40156	729	729	91508	729	729	729	7541C
NATE OF TAXABLE	5131440400	04.0	042	02024	040	04.2	040	1270
Wheatland Yellow	FLNA10182	812	812	83931	812	812	812	137C
Dark Woodland Green	FLNA60181	807	807	48339	807	807	807	3308C
Cardinal Red	ISU736	736	736	75097	736	736	736	202C
Dark Blue	ISU695	695	695	909649	695	695	695	655C
Black	ISU508	508	508	N/A	508	508	508	Black 6C

(1) The Pantone colors listed are the closest Pantone color numbers to the OEM paint colors and are given for reference only

Figure 4.3.1

Low Cab Forward Towing Procedure

WHEN TOWING A VEHICLE: Proper equipment must be used to prevent damage to vehicles during any towing. State and local laws which apply to vehicles in tow must be followed. Vehicles should not be towed at speeds in excess of 55 MPH (88 km/h). Connect to the main structural parts of the vehicle. Do not attach to bumpers, tow hooks or brackets. Use only equipment designed for this purpose. Follow the instructions of the wrecker manufacturer. A safety chain system must be used. The procedures below must be followed when towing to prevent possible damage.

FRONT END TOWING (FRONT WHEELS OFF GROUND)

To prepare a disabled vehicle for front end towing with front wheels raised off the ground, the following steps are necessary:

- · Block the rear wheels of the disabled vehicle.
- Disconnect the propeller shaft at the rear axle. Secure the propeller shaft to the frame or cross member.

CAUTION: WHEN TOWING, DISCONNECT THE DRIVESHAFT AT THE REAR AXLE TO ENSURE THE TRANSMISSION IS NOT DAMAGED.

If there is damage or suspected damage to the rear axle, remove the axle shafts.

Cover the hub openings to prevent the loss of lubricant or entry of dirt or foreign objects. Place a 10 cm (4 in) wood beam against the towing guide behind the bumper.

(If no 10 cm (4 in) is available, then remove the bumper.) Ensure towing chains do not come into contact with the horns or the bumper.

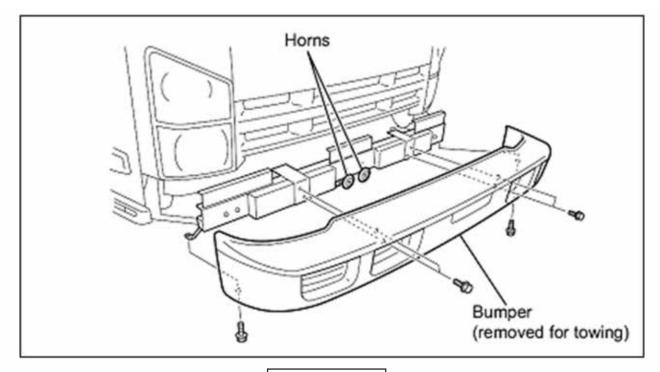


Figure 4.4.1

AFTER TOWING

After towing the vehicle, block the rear wheels and install axle shafts or driveshaft. Apply the parking brake before disconnecting from the towing vehicle.

FRONT END TOWING (ALL WHEELS ON THE GROUND)

Your vehicle may be towed on all wheels provided the steering is operable. Remember that power steering and brakes will not have power assist. There must be a tow bar installed between the tow vehicle and the disabled vehicle.

TOWING WITH ALL WHEELS ON THE GROUND

To prepare a disabled vehicle for front end towing with all wheels on the ground, the following steps are necessary:

- Block the wheels of the disabled vehicle.
- Disconnect the propeller shaft at the rear axle.
 Secure the propeller shaft to the frame or crossmember.

CAUTION:

When towing, disconnect the driveshaft at the rear axle to ensure the transmission is not damaged. Provide wood blocking to prevent towing chains and bar from coming into contact with the bumper. If there is damage or suspected damage to the rear axle, remove the axle shafts. Cover the hub openings to prevent the loss of lubricant or entry of dirt or foreign objects.

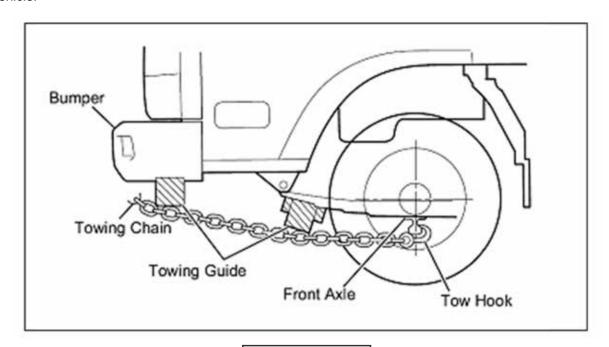


Figure 4.5.1

CAUTION:

When towing, disconnect the driveshaft at the rear axle to ensure the transmission is not damaged. Provide wood blocking to prevent towing chains and bar from coming into contact with the bumper. If there is damage or suspected damage to the rear axle, remove the axle shafts. Cover the hub openings to prevent the loss of lubricant or entry of dirt or foreign objects.

AFTER TOWING

After towing the vehicle, block the rear wheels and install axle shafts or propeller shaft. Apply the parking brake before disconnecting from the towing vehicle. Check and fill rear axle with oil, if required.

REAR END TOWING

When towing a vehicle with rear wheels raised, secure the steering wheel to maintain straight-ahead position. Make certain that the front axle is not loaded beyond the front axle gross axle weight rating (GAWR) as indicated on the vehicle's VIN and weight rating plate.

SPECIAL TOWING INSTRUCTIONS

- 1. All state and local laws regarding such items as warning signals, night illumination, speed, etc., must be followed.
- 2. Safety chains must be used.
- 3. No vehicle should ever be towed over 55 MPH (88 km/h).
- 4. Loose or protruding parts of damaged vehicles should be secured prior to moving.
- 5. A safety chain system completely independent of the primary lifting and towing attachment must be used.
- 6. Operators should refrain from going under a vehicle which is being lifted by the towing equipment unless the vehicle is adequately supported by safety stands.
- 7. No towing operation which for any reason jeopardizes the safety of the wrecker operator or any bystanders or other motorists should be attempted.

5.01

<u>MECHANICAL AND CAB SPECIFICATIONS</u> <u>Engine Horsepower and Torque Chart</u>

The following table presents Net versus Gross Horsepower and Torque ratings for Isuzu Product Engines:

ENGINE MODEL	VEHICLE MODEL	Net HP	Net Torque	Gross HP	Gross Torque
LINGINE MODEL	VEHIOLE MODEL	HP/RPM ¹	LBS-FT/RPM ¹	HP/RPM ¹	LBS FT/RPM
AUTOMATIC TRANSMISSION					
GMPT - 6.0L - V8	3500, 4500 Gas	293/4300	368/4000	297/4300	372/4000
ISUZU 4JJ1-TC	3500HD Diesel	147/2700	277/1600-2800	150/2800	282/1600-2800
ISUZU 4HK1-TC	4500HD, 4500XD, 5500HD, 5500XD	210/2500	441/1850	215/2500	452/1850
ISUZU 4HK1-TC	6500XD	210/2500	520/1600	215/2500	520/1600

Figure 5.0.1

GVW/GCW Ratings

The following table presents GVW ratings and corresponding GCW ratings for each model truck:

Truck Model	Transmission	GVWR (lbs.)	GCWR (lbs.) ³
3500 GAS	AUTOMATIC	12,000	18,000
4500 GAS	AUTOMATIC	14,500	20,500
3500HD DIESEL	AUTOMATIC	13,000	19,000
4500HD DIESEL	AUTOMATIC	14,500	20,500
4500XD DIESEL	AUTOMATIC	16,000	22,000
5500HD DIESEL	AUTOMATIC	17,950	23,950
5500XD DIESEL	AUTOMATIC	19,500	25,500
6500XD	AUTOMATIC	25,950	30,000

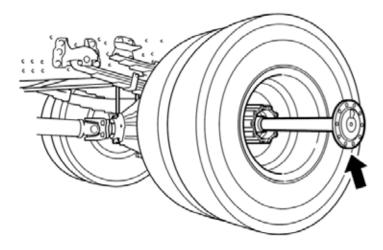
Figure 5.0.2

NOTE: 1. Horsepower and Torque Ratings are measured under SAE J1349 standards.

2. Governed RPM 4HK1-TC 2760 rpm 4JJ1-TC 3600rpm

3. The Chevrolet Gas/Diesel engines are not approved for Hot Shot applications.

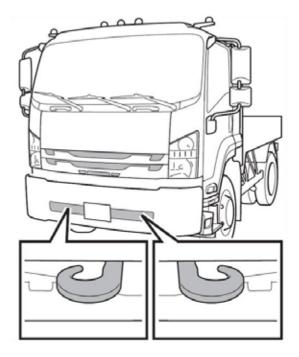
5.02


6500XD Towing Procedure

When towing a vehicle: To move a disabled vehicle, it is best to rely on someone in the wrecker or tow truck business. If that is not possible, follow these procedures. When towing, use appropriate equipment and comply with state and local legal requirements. Do not try to start the engine by towing or pushing the vehicle.

CAUTION:

- Be sure to chock the wheels when disconnecting the axle shaft. The vehicle could start to move and cause a serious accident. The vehicle will start moving upon disconnecting the axle shaft.
- Place the gearshift lever in the "N" position, and tow for a maximum distance of 6.2 miles (10 km) at speeds less than 25 MPH (40 km/h). Other than the above, disconnect the axle shaft when towing to avoid damage to the transmission.
- Whenever possible, tow a vehicle with the engine started. If the engine is not started:
- The brakes will not be as effective
- The steering wheel will be hard to turn
- The steering wheel could lock, making it impossible to move. This is extremely dangerous. (When the ignition key is removed.)
- If you apply any one of the air brake parking controls while the vehicle is moving, your rig will stop suddenly. If you are not ready for this, you or others could be injured. Do not apply any one of these controls while you are driving, unless you have to make an emergency stop.


Front End Towing (All wheels on the ground, or the front wheels are off the ground): When it is possible to operate the steering wheel, the vehicle can be towed with all wheels on the ground. If the engine cannot be started, the power steering system does not work, making steering difficult. In addition, when air pressure is low, the brakes will not work. Either install a tow bar between the towing vehicle and the disabled vehicle, or use a tow truck to move the disabled vehicle. To prevent damage to the differential and pinion seal, the axle shafts need to be removed whenever the vehicle is towed with the rear tires on the ground. Remove the axle shaft and plug up the opening of the hub to prevent differential gear oil from leaking, or to prevent dirt or foreign objects from entering the axle. When towing, disconnect the axle shaft at the rear axle to ensure the transmission is not damaged.

- 1. If the vehicle is towing or is towed, firmly attach a rope to the front towing hook on the same side.
- 2. During towing, carefully watch the stop lights of the towing vehicle in order to prevent slack in the rope. Ensure that there are no strong shocks or lateral force applied to the vehicle. Excessive towing load can damage the towing hook.

CAUTION:

- Do not tow a vehicle at an angle of greater than 15°. This could exert too much stress on the vehicle and damage it.
- Attach a rope to the towing hook only. Attaching a rope to any other part of the vehicle could damage it.
- Make sure there are no people near the towing rope and hook before towing a vehicle. If the rope snaps, people nearby could be injured.
- The towing hook is for use to tow a vehicle with about the same weight as the towing vehicle on good roads.
- When coming to channels or muddy areas, unload the vehicle. Do not use the towing hook to tow, but tow with a rope attached to the axle.

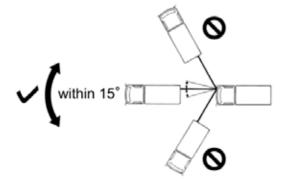


Figure 5.03.1

EIGHT DISTRIBUTION CONCEPTS

Weight Restrictions

The Gross Vehicle Weight Rating (GVWR) and the Gross Axle Weight Rating (GAWR) of each Incomplete Vehicle are specified on the cover of its Incomplete Vehicle Document in conformance to the requirements of Part 568.4 of the Federal Motor Vehicle Safety Regulations. The final stage manufacturer is responsible under Part 567.5 to place the GVWR and the GAWR of each axle on the Final Vehicle Certification Label. The regulation states that the appropriate rating "shall not be less than the sum of the unloaded vehicle weight, rated cargo load, and 150 pounds times the vehicle's designated seating capacity."

Unloaded vehicle weight means the weight of a vehicle with maximum capacity of all fluids necessary for operation of the vehicle, but without cargo or occupants.

During completion of this vehicle, GVWR and GAWR may be affected in various ways, including but not limited to the following:

- 1. The installation of a body or equipment that exceeds the rated capacities of this Incomplete Vehicle.
- 2. The addition of designated seating positions which exceeds the rated capacities of this Incomplete Vehicle.
- 3. Alterations or substitution of any components such as axles, springs, tires, wheels, frame, steering and brake systems that may affect the rated capacities of this Incomplete Vehicle.

Use the following chart to assure compliance with the regulations. Chassis curb weight and GVW rating is located on Page 2 in each vehicle section. Always verify the results by weighing the completed vehicle on a certified scale.

Curb Weight of Chassis (lbs.)		
		(From required vehicle section)
PLUS weight of added body components, accessories or other permanently attached components.	+	
		(Body, liftgate, reefer, etc.)
PLUS total weight of passengers, air conditioning and all load or cargo.	+	
		(Driver, passengers, accessories and load)
EQUALS Gross Vehicle Weight (lbs.) (GVW) of completed vehicle.	=	
		(Should equal GVWR from required vehicle section)

5.2

Gross Axle Weight Rating

The Gross Vehicle Weight is further restricted by the Gross Axle Weight Rating (GAWR). The maximum GAWR for both front and rear axles is listed in each Vehicle Section. Weight distribution calculations must be performed to ensure GAWR is not exceeded. Always verify the results by weighing the completed vehicle on a certified scale.

NOTE: Although the Front Gross Axle Weight Rating (FGAWR) plus the Rear Gross Axle Weight Rating (RGAWR) may exceed the Gross Vehicle Weight Rating (GVWR), the total GVW may not exceed the respective maximum GVWR.

The variation in the GAWRs allow the second stage manufacturer some flexibility in the design of the weight distribution of the attached unit.

Weighing the Vehicle

Front and rear GAWRs and total GVWR should be verified by weighing a completed loaded vehicle. Weigh the front and rear of the vehicle separately and combine the weights for the total GVWR. All three weights must be less than the respective maximum shown in the vehicle sections.

Tire Inflation

Tire inflation must be compatible with GAWR and GVWR as specified on the cover of the Incomplete Vehicle Document for each vehicle.

Center of Gravity

The design of the truck body should be such that the center of gravity of the added load does not exceed the guidelines as listed in each Vehicle Section. If the body is mounted in such a way that the center of gravity height exceeds the maximum height of the center of gravity designated for each model, the directional stability at braking and roll stability at cornering will be adversely affected. A vertical and/or horizontal center of gravity calculation must be performed if a question in stability arises to ensure the designed maximum height of the center of gravity is not violated.

5.3

Weight Distribution

A truck as a commercial vehicle has but one purpose. That purpose is to haul some commodity from one place to another. A short distance or a long distance, the weight to be hauled, more than any other factor, determines the size of the truck. A small weight requires only a small truck; a large weight requires a large truck. A simple principle, but it can easily be misapplied. In any case, selecting the right size truck for the load to be hauled will ensure that the job will be done and that it will be able to be done with some degree of reliability and within the legal limitations of total gross weight and axle gross weights.

Not only must a truck be selected that will handle the total load, but the weight must also be properly distributed between the axles. This is of extreme importance from both a functional and economic aspect. If a truck consistently hauls less than its capacity, the owner is not realizing full return on his investment and his operating costs will be higher than they should be. If the truck is improperly loaded or overloaded, profits will be reduced due to increased maintenance costs and potential fines resulting from overloading beyond legal limitations. Careful consideration must be given to distribution of the load weight in order to determine how much of the total, including chassis, cab, body and payload, will be carried on the front axle and how much will be carried on the rear axle, on the trailer axles and the total. Moving a load a few inches forward or backward on the chassis can mean the difference between acceptable weight distribution for the truck or an application that will not do the job satisfactorily.

Every truck has a specific capacity and should be loaded so that the load distribution is kept within Gross Axle Weight Ratings (GAWR) and the truck's Gross Vehicle Weight Rating (GVWR) or Gross Combination Weight Rating (GCWR) for a tractor/trailer and the weight laws and regulations under which the truck will operate. Improper weight distribution will cause problems in many areas:

- 1. Excessive front end wear and failure
 - a. Tie-rod and kingpin wear
 - b. Front axle failure
 - c. Overloading of front suspension
 - d. Wheel bearing failure
- 2. Rapid tire wear
 - a. When the weight on a tire exceeds its rating capacity, accelerated wear will result and could result in tire failure.

5.4

Weight Distribution

3. Rough, erratic ride

a. If the center of the payload is directly over or slightly behind the rear axle, the lack of sufficient weight on the front axle will create a bobbing effect, very rough ride, and erratic steering. This condition will be magnified when the truck is going uphill.

4. Hard steering

- a. When loads beyond the capacity of the front axle are imposed upon it, the steering mechanism is also overloaded and hard steering will result.
- b. Excessive overloading could result in steering component damage or failure.
- 5. Unsafe operating and conditions
 - a. Poor traction on the steering axle effects the safety of the driver and equipment, particularly on wet, icy and slippery surfaces. Experience indicates that approximately 30% of the total weight at the ground on a truck or tractor should be on the front axle with a low cab forward vehicle.
 - b. When a truck is overloaded, a dangerous situation may exist because minimum speeds cannot always be maintained, directional control may not be precise and insufficient braking capacity can cause longer than normal braking distances.
- 6. High maintenance costs
 - a. Improper weight distribution and overloading cause excessive wear and premature failure of parts. Additional stresses imposed on the frame by the misapplication of wheelbases may be instrumental in causing the frame to crack or break.
- 7. Noncompliance with weight laws and regulations
 - a. When there is the possibility that axle loads will exceed existing weight laws and regulations, careful weight distribution is necessary to provide a correct balance between front and rear axle loads and total load within legal limitations.

In this way, maximum payloads may be carried without exceeding legal limits. If the body is too long for a wheelbase, the center of the body and payload is placed directly over the rear axle. This places all the payload on the rear axles, resulting in overloading the rear tires, rear axle springs and wheel bearings and potentially exceeding the rear axle legal weight limit. The front axle is then carrying no part of the payload and is easily lifted off the ground when going over rough terrain, creating a very rough ride and temporary loss of steering control. If the body is too short for the wheelbase used, frame stress may be increased and may result in excessive loads on the front axle. Excessive front axle loads increase wear on the kingpins and bushings, wheel bearings and steering gear. Excessive front axle loads also overstress the front axle, springs, tires and wheels. All of these contribute directly to higher maintenance costs and hard steering, both of which are undesirable.

Weight Distribution

Weight distribution analysis involves the application of basic mathematical principles to determine the proper positioning of the payload and body weight in relation to the wheelbase of the truck chassis.

It is much less expensive to work all of this out on paper, make mistakes on paper and correct them there than to set up the truck incorrectly and either have it fail to do the job or, much worse, fail completely.

It is important to become familiar with the dimensions of the truck, as these will be needed to perform the necessary calculations.

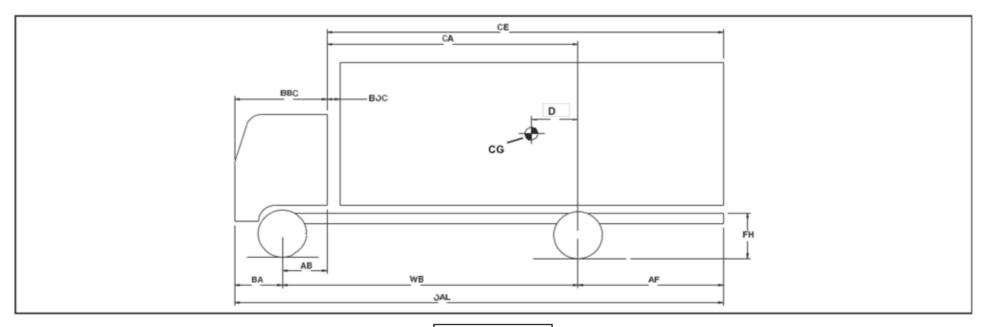


Figure 5.5.1

Glossary of Dimensions

BBC –	Bumper to	back of ca	ıb
-------	-----------	------------	----

BA – Bumper to axle CA – Cab to axle

AB – Axle to back of cab
BOC – Back of cab clearance
CE – Cab to end of frame

CG – Center of gravity of body and payload

WB – Wheelbase
OAL – Overall length
AF – Axle to end of frame

FH – Frame height

Weight Distribution Formulas

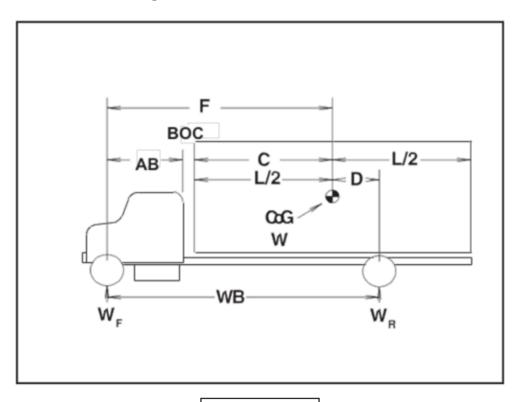


Figure 5.6.1

AB - Front axle to back of cab

BOC – Distance between cab and body or trailer

Front of body to C.G. or front of trailer to kingpin

D – Distance C.G. of body or fifth wheel is ahead of rear axle

F – (AB + BOC +C) or distance C.G. of weight of fifth wheel is behind front axle

WB – Wheelbase

W – Weight of body plus payload, or kingpin load

WF - Portion of W transferred to front axleWR - Portion of W transferred to rear axle

C – Length of body divided by 2

L/2 – Load location at half of body length

Distance over which the payload is spread within the Body

or

[♯] 5.7

Weight Distribution Formulas

Basic Formulas

(a)
$$W \times D = Wf \times WB$$

(c) WB = (AB + BOC + C + D) = (F + D)

(b)
$$W \times F = Wr \times WB$$

(d) W = Wf + Wr

2. D =
$$\frac{W \times WB}{W}$$

3. WB =
$$\frac{W \times D}{W_{f}}$$

7. WB =
$$\frac{W \times F}{W}$$

$$\mathbf{4. W} = \underbrace{\mathbf{W}_{f} \times \mathbf{WB}}_{D}$$

Weight Distribution Formulas in Words

To find:

1. Weight transferred to front axle = (Total weight) x (Distance C.G. is ahead of the rear axle) (Wheelbase)

2. Distance C.G. must be placed ahead of rear axle = (Weight transferred to the front axle) x (Wheelbase) (Total weight)

3. Wheelbase = (Total weight) x (Distance C.G. is ahead of the rear axle) (Weight to be transferred to the front axle)

4. Total Weight = (Weight to be transferred to the front axle) x (Wheelbase)

(Distance C.G. is ahead of the rear axle)

Weight Distribution Formulas

- 1. Weight transferred to rear axle = (Total weight) x (Distance C.G. is behind the front axle) (Wheelbase)
- 2. Distance C.G. must be placed behind the front axle = (Weight transferred to the rear axle) x (Wheelbase) (Total weight)
- 3. Wheelbase = (Total weight) x (Distance C.G. is behind the front axle)
 (Weight to be transferred to the rear axle)
- 4. Total Weight = (Weight to be transferred to the rear axle) x (Wheelbase)

 (Distance C.G. is behind the front axle)
- 9. Remember = Total weight must always equal weight transferred to the rear axle plus the weight transferred to the front axle

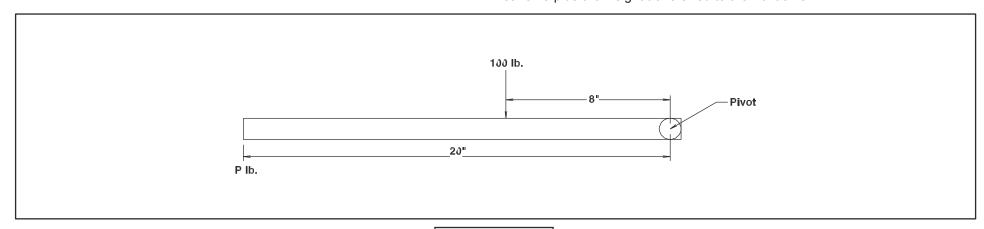


Figure 5.8.1

To find the value of "P", the leverages must be equal for balance.

Example: 100 lbs. x 8 in. = "P" x 20 in.

or "P" = $\frac{100 \text{ lbs. x 8 in.}}{20 \text{ in.}}$

Therefore: "P" = 40 lbs.

This same approach is used to determine axle loadings on a tractor or truck chassis. Assuming the rear axle serves as a pivot point, the front axle load can be determined by applying the lever principle.

5.9

Weight Distribution Formulas

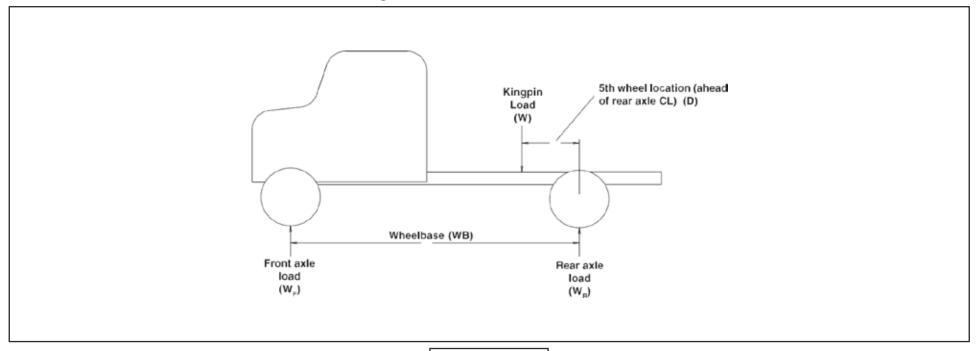


Figure 5.9.1

Front Axle Load: = Kingpin Load x 5th Wheel Location

Wheelbase

Rear Axle Load: = Kingpin Load – Front Axle Load

Example: (4) A tractor has a wheelbase of 150 inches. If the kingpin load is 20,000 lbs. and the fifth wheel location is 15 inches, find the total weight on the front and rear axles. The tare weight of the tractor is 7,000 lbs. on the front axle and 4,400 lbs. on the rear axle.

Front Axle Load

 $20,000 \times 15 = 2,000 \text{ lbs.}$

150 WB

Rear Axle Load = 2,000 + 7,000 lbs. = 9,000 lbs.

Therefore:

Total Front Axle Weight = 2,000 + 9,000 lbs. = 11,000 lbs. Total Rear Axle Weight = 4,400 + 18,000 lbs. = 22,400 lbs.

Weight Distribution Formulas

In calculating the weight distribution for a truck, the same lever principle is applied; however, there is one change in the initial consideration of the method of loading the truck body. Instead of the trailer kingpin location ahead of the rear axle centerline, we must determine the position of the center of gravity of the payload and body weight in relation to the rear axle centerline.

For our calculations, we assume that the payload is distributed in the truck body so that the load is supported evenly over the truck body floor (water-level distribution). The weight of the body itself is also considered to be evenly distributed along the truck frame. In this manner, we can add the payload and body weights together and calculate the distribution on the vehicle chassis as an evenly distributed load on the truck frame rails.

So that we can make the necessary calculation in a simple manner, the total body and payload weight is considered to act at the center of gravity which will be at the center of the body length.

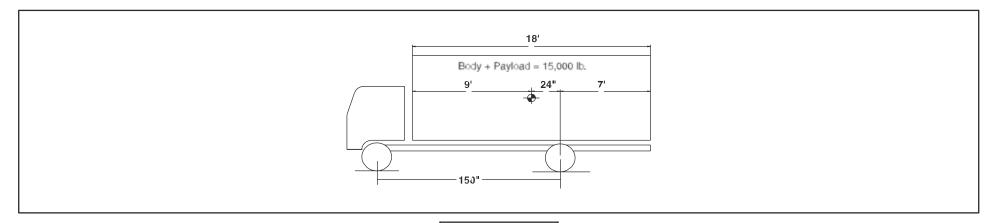


Figure 5.10.1

Example:

Front Axle Load =
(Body Weight + Payload) x C of G location
Wheelbase

Rear Axle Load = (Body Weight + Payload) – Front Axle Load

Therefore, Front Axle Load = 15,000 x 24 = 2,400 lbs. 150

Rear Axle Load = 15,000 - 2,400 = 12,600 lbs.

Weight Distribution Formulas

If the truck tare weight without the body is 5,000 lbs. on the front axle and 2,400 lbs. on the rear axle, then Total Front Axle Weight = 5,000 + 2,400 = 7,400 lbs. and Total Rear Axle Weight = 2,400 + 12,600 = 15,000 lbs.

This same lever principle is applied in all calculations of weight distribution, whether we are dealing with concentrated loads as with a kingpin load acting on a fifth wheel or if it be with an evenly distributed load as with a truck body. The same approach is made in calculating an evenly distributed load on a trailer.

In the case of a tractor/trailer or a tractor with a set of double or triple trailers, each unit is handled as a separated unit and then combined to determine the total.

This simple example illustrates how the principles are applied. Using the formulas, find the weight distributed to each axle.

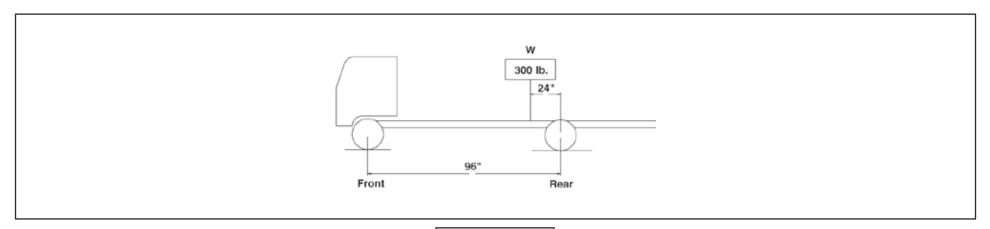


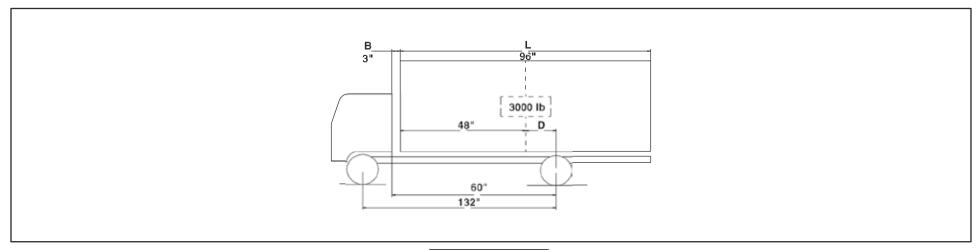
Figure 5.11.1

Front Weight Rear Weight

A.
$$Wf = \frac{W \times D}{WB}$$

A.
$$W - Wf$$

C.
$$= 75 lbs$$
.


C. =
$$225 lbs$$
.

The body manufacturer can provide the body length and weight, or actual measurements of the body may be taken with a tape. Generally, (D) is unknown. This you must find logically, or with a tape measure.

5.12

Weight Distribution Formulas

Find (D) and then solve for Wf and Wr.

D = 60-3-48 = 9 in.

Figure 5.12.1

 $W_{i} = 205$

 $W_{.} = 2,795$

Recommended Weight Distribution % of Gross Vehicle Weight by Axle

Conventional (2 Axle)

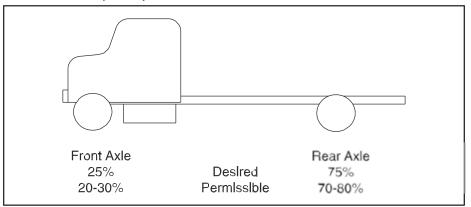


Figure 5.12.2

COE (2 Axle)

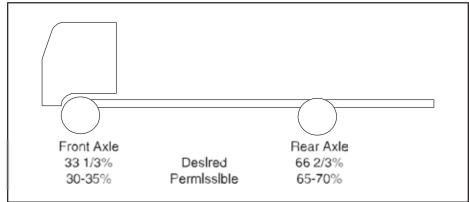
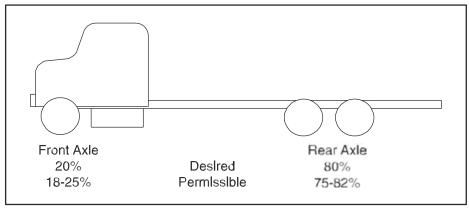



Figure 5.12.3

5.13

Recommended Weight Distribution % of Gross Vehicle Weight by Axle

Conventional (3 Axle)

COE (3 Axle)

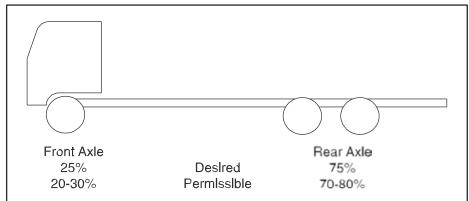
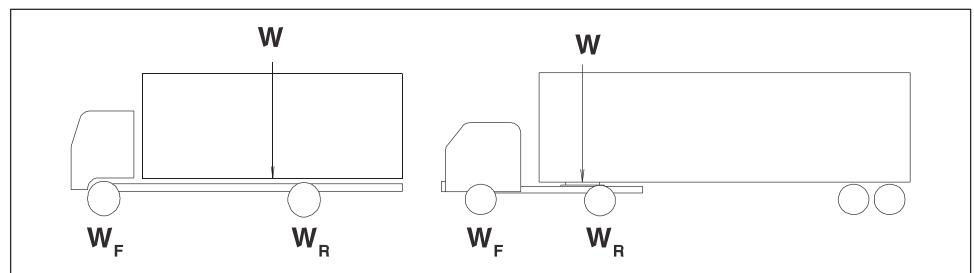



Figure 5.13.1

Figure 5.13.2

Calculating tractor/trailer weight distribution can be thought of in the same terms as calculating full trucks.

The weight at the center of the body and the load when applied is the same as the single point load of the kingpin on the fifth wheel.

Figure 5.13.3

Trailer Weight

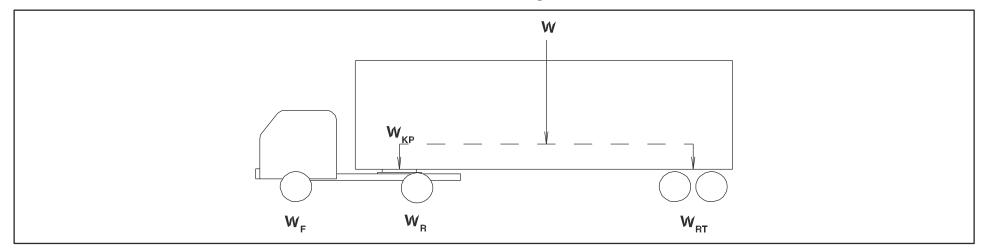


Figure 5.14.1

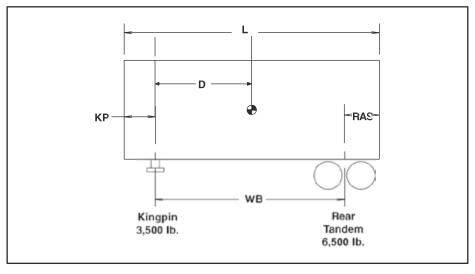


Figure 5.14.2

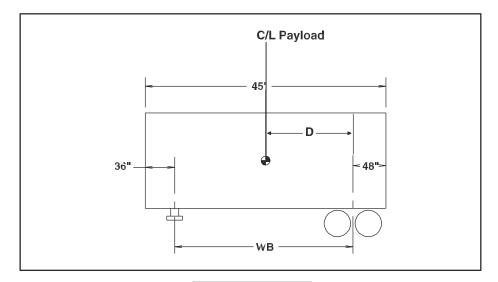


Figure 5.14.3

In the following example, a 50,000-pound payload at water-level loading. Calculate the payload (PL) weight transfer to kingpin and the rear axle. **NOTE:** Apply the same principles used with truck chassis.

Trailer Weight

Payload at Kingpin

$$PL_{kp} = \frac{W \times D}{WB}$$

Calculate the "D" dimension.

OAL/2 – AF = D

$$45 \text{ feet/2} - 48 \text{ inches} - 36 \text{ inches} = 186 \text{ inches}$$

PL_{kp} = $\frac{50,000 \text{ lbs. x } 186 \text{ in.}}{456 \text{ in.}} = 20,394 \text{ lbs.}$

Payload at Rear Tandem

$$PL_{rt} = W - PL_{kp}$$

$$PL_{rt} = 50,000 \text{ lbs.} - 20,394 \text{ lbs.} = 29,606 \text{ lbs.}$$

$$PL_{rt} = 29,606 \text{ lbs.}$$

Once the weight on the kingpin is determined, it can then be treated on the tractor the same as a weight on a straight truck.

Due to the variations in hauling and wheelbase requirements from one truck application to another, there is no one specific fifth wheel setting that will apply in all cases.

A "rule of thumb" which has proven satisfactory in many cases sets the fifth wheel one inch ahead of the rear axle for every 10 inches of wheelbase. In the case of tandem axles, the wheelbase is measured from the center line of the front axle to the midpoint between the tandem rear axles. The location of the fifth wheel fixes the load distribution between the front and rear axles. Too far forward and the front axle is overloaded. If too far back, the front axle may be too lightly loaded and cause an unsafe steering and braking control situation at the front axle.

5.16

Trailer Weight

A tractor on a hill with the fifth wheel set at the axle center line or too close to it will result in an unsafe handling situation by transferring too much weight to the rear axle and actually unloading the front axle

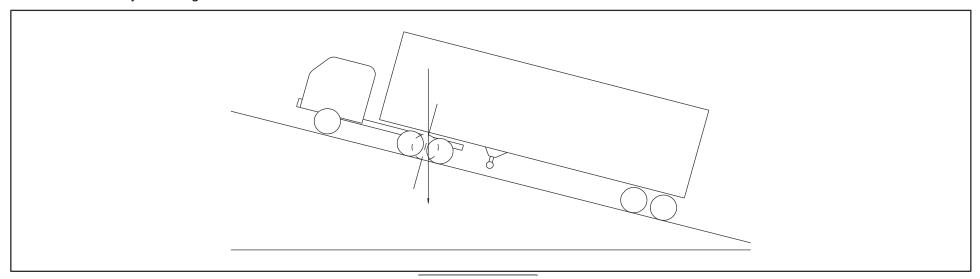


Figure 5.16.1

Performance Calculations

The following calculations have been included to help you determine the performance characteristics required by your customers and to select the appropriate model vehicle:

1. Speed Formula

This formula can be used to determine:

- 1. Top speed of the vehicle.
- 2. Speed in a given gear.
- 3. Final ratio required for a given speed.

MPH @ Governed Speed =
$$(60) \times (RPM)$$

(Rev/Mile) x (Gear Ratio)

Definitions in formula:

RPM = Revolutions per minute of the engine at Governed Speed

Rev/Mile = Tire revolutions per mile

Gear Ratio = The product of the axle ratio times the transmission ratio

60 = Time Constant

Example: NPR 12,000 GVWR automatic transmission.

RPM = 3,000 Rev/Mile = 674

Gear Ratio = $.703 \times 5.375$

MPH @ Governed Speed = (60)x(3,000)

(674) x (.703 x 5.375)

MPH @ Governed Speed = 70 MPH

2. Grade Horsepower Formula

This formula can be used to determine horsepower required for a given grade and speed.

Horsepower Req'd. for a given grade = GVWR x Grade x Speed

+ AHP

37,500 x Efficiency Factor

Definitions in formula:

GVWR = Gross Vehicle Weight Rating
Grade = Grade anticipated in percent
Speed = Speed in miles per hour

37,500 = Constant

Efficiency Factor = Factor for losses in drivetrain due to friction

(use 0.9 for a 90% efficient driveline)

AHP Resistance = Horsepower required to overcome wind force

5.18

Performance Calculations

Example: NPR 11,050 GVWR automatic transmission with a van body.

GVWR = 12,000 lbs.

Grade = 1 percent

Speed = 55 MPH

37,500 = Constant

Efficiency Factor = 0.9

AHP Resistance = 53.6 HP (see the following formula for calculation)

12,000 x 1 x 55

HP Required for Grade = + 53.67

37,500 x 0.9

HP Required for Grade = 73.22

3. Air Resistance Horsepower Formula

This formula is used to determine the horsepower required to overcome air resistance at a given speed.

Air Resistance Horsepower = $\frac{\text{FA x Cd x (MPH)}^3}{156,000}$

Definitions in formula:

FA = Frontal area of vehicle in square feet
Cd = Aerodynamic Drag Coefficient
MPH = Speed of vehicle in miles per hour

156.000 = Constant

Frontal area is calculated by multiplying the height of the vehicle by the width of the vehicle and subtracting the open area under the vehicle from the total.

Aerodynamic Drag Coefficients (Source Material: Motor Truck Engineering Handbook):

0.70 for most trucks, semitrailer combinations with tanks or van bodies

0.77 for double and triple trailers and flatbeds with loads

5.19

Performance Calculations

Example: NPR 12,000 GVWR van body with 96" wide, 115" high (84" body height + 31" frame height).

FA =
$$\frac{(96) \times (115)}{(12) \times (12)}$$
 -3.2

FA = 73.47 ft.2 Cd = 0.70Speed = 55 mph

Air Resistance HP = $\frac{73.47 \times 0.70 \times (55)^3}{156,000}$

Air Resistance HP = 54.85

4. Engine Horsepower Formula

This formula can be used to derive the output at a given RPM and torque.

Horsepower = Torque x RPM 5,252

Definitions in formula:

Torque = Twisting output of engine given in lbs.-ft.

RPM = Revolutions per minute of engine

5,252 = Constant

Example: NPR 12,000 GVWR automatic transmission.

Torque = 347 lbs.-ft. RPM = 2.000

132 HP = $\frac{2,000}{5,252}$

5. Gradeability Formula

This formula can be used to determine how large of a grade a vehicle can climb.

Definitions in formula:

```
1,200 = Constant
T = Maximum Torque of Engine
E = Engine Efficiency (0.9)
C = Driveline Efficiency (0.9)
R = Transmission Ration x Axle Ratio
RR = Rolling Resistance (see following chart)
GVWR = Gross Vehicle Weight Rating
r = Loaded radius of tire
```

Example: NPR 12,000 GVWR automatic transmission on concrete highway.

```
\begin{array}{lll} T & = & 347 \, lbs.\text{-ft.} \\ E & = & 0.9 \\ C & = & 0.9 \\ R & = & .703 \, x \, 5.375 \, (in \, overdrive) \\ RR & = & 1.0 \\ GVWR & = & 12,000 \\ r & = & 14.1 \, in. \end{array}
```

Percent Grade =
$$\frac{1,200 \times (347) \times (0.9) \times (0.9) \times (.703) \times (5.375)}{12,000 \times 14.1}$$
 -1.0

Percent Grade = 7.53 - 1

Gradeability = 6.53%

		ing Resistance	
	Road Rolling Resistance	- Expressed in Percent Grade	
Road Surface	Grade Road	Surface	Grade
Concrete, excellent	1.0	Cobbles, ordinary	5.5
Concrete, good	1.5	Cobbles, poor	8.5
Concrete, poor	2.0	Snow, 2 inches	2.5
Asphalt, good	1.25	Snow, 4 inches	3.75
Asphalt, fair	1.75	Dirt, smooth	2.5
Asphalt, poor	2.25	Dirt, sandy	3.75
Macadam, good	1.5	Mud	3.75 to 15.0
Macadam, fair	2.25	Sand, level soft	6.0 to 15.0
Macadam, poor	3.75	Sand, dune	16.0 to 30.0

Figure 5.21.1

6. Startability Formula

This formula is used to determine what type of a grade a vehicle can be started on.

Startability = $\frac{(1,200) \times (CET) \times (E) \times (C) \times (R)}{(GVWR \times r)} - 10\%$

Definitions in formula:

1,200 = Constant

CET = Clutch Engagement Torque

E = 0.9C = 0.9

R = Transmission x Axle Ratio

10% = Average break away resistance and static inertia constant

GVWR = Gross Vehicle Weight Rating

r = Loaded radius of tire

Example: 3500 LCF 12,000 GVWR manual transmission.

CET = 260 lbs.-ft. R = 6.02 x 4.10 GVWR = 12,000 lbs. r = 14.1 in.

Startability = $\frac{(1,200) \times (260) \times (0.9) \times (0.9) \times (6.02 \times 4.10)}{(12,000 \times 14.1)} - 10\%$

Startability = 26.86%

7. Vertical Center of Gravity Formula

These formulas are used to estimate the vertical center of gravity of a completed vehicle in order to determine whether maximum allowable limits have been exceeded. This formula should be used when encountering high center of gravity loads.

7.1 Wv x (Vv) = Mv 7.2 Wb x (Vb) = Mb 7.3 Wp x (Vp) = Mp7.4 We x (Ve) = Me

7.5 VCg = $\frac{\text{(Mv+ Mb+Mp+Me)}}{\text{(Wv + Wb + Wp + We)}}$

Definitions in formula:

VCg = The total average vertical center of gravity of the

completed vehicle (vehicle, body, payload and equipment)

Wv = Weight of vehicle
Wb = Weight of body
Wp = Weight of payload
We = Weight of equipment

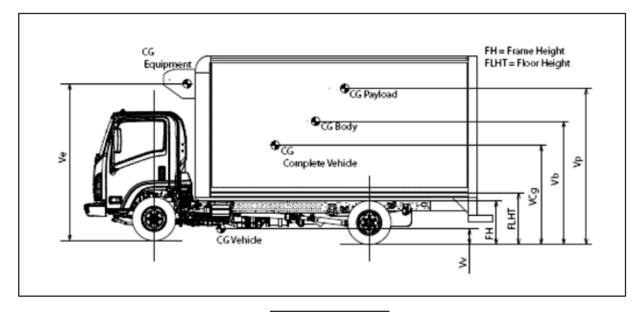


Figure 5.22.1

Definitions in formula (continued):

٧v Distance from ground to center of gravity of the vehicle Vb Distance from ground to center of gravity of the body Distance from ground to center of gravity of the payload Vp = = Distance from ground to center of gravity of the equipment Ve Μv = Moment of vehicle Mb = Moment of body Mp = Moment of payload Moment of equipment Me =

Example: 3500 12,000 GVWR automatic transmission, 132" WB, 14' body length, 84" high body, full payload of boxes stacked to a maximum height of 48" above the flooring.

```
Wv
              5.291 lbs.
                              (from vehicle specifications)
       =
                              (from body manufacturer)
Wb
       =
              2,100 lbs.
                              (GVWR - (Wv + Wb + We))
       =
              4,609 lbs.
Wp
٧v
              24.9 in.
                              (from Body Builder's Guide, 3500 Section)
              80 in.
                              (from body manufacturer)
Vb
                             (1/2 of payload height + frame height + height from frame to flooring)
              62 in.
Vp
              5,291 \times 24.9 = 131,746 \text{ lbs.-in.}
                                                      (from 7.1)
Μv
Mb
       =
              2,100 \times 80 = 168,000 \text{ lbs.-in.}
                                                      (from 7.2)
Mp
              4,609 \times 62 = 285,758 \text{ lbs.-in.}
                                                      (from 7.3)
```

We, Ve, Me = None in this example

VCg =
$$\frac{(131,746+168,000+285,758)}{(5,291+2,100+4,609)}$$
VCg =
$$\frac{(528,504)}{(12,000)}$$
 = 48.8 inches

48.8 < 54.0 inches (54 inches is maximum allowable VCg per mfg. specifications from Body Builder's Guide, 3500 section) Since maximum VCg for this truck is not exceeded, 48" stack height above flooring is acceptable.

8. Horizontal Center of Gravity Formula

These formulas are used to estimate the horizontal center of gravity of a completed vehicle in order to determine whether it exists between the centerlines of the front and rear axles. This formula should be used when a load and/or permanent equipment (liftgate, reefer unit, snowplow, etc.) is installed on either extreme along the completed vehicle's overall length.

8.1 Wv x (Hv) =

8.2 Wb x (Hb) =Mb

8.3 Wp x (Hp) =Mp

8.4 We x (He) =Me

(Mv+Mb+Mp+Me)8.5 HCg (Wv + Wb + Wp + We)

Definitions in formula:

HCg The total average horizontal center

of gravity of the completed vehicle (vehicle, body, payload and equipment)

Weight of vehicle Wv

Weight of body Wb

Wρ Weight of payload We

Weight of equipment Hν Distance from front axle to

center of gravity of the vehicle

Hb Distance from front axle to center of gravity of the body

Distance from front axle to

center of gravity of the payload

Distance from front axle to He

center of gravity of the equipment

Moment of vehicle Mν Mb Moment of body Mp Moment of payload Momentofequipment Me

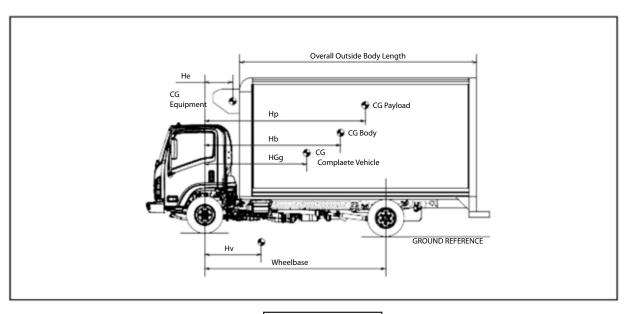


Figure 5.24.1

Hр

Example: 3500 Gas 12,000 GVWR automatic transmission, 132" WB, 14' body length, full payload of boxes stacked and distributed evenly throughout the flooring, 1,000 lb. reefer unit attached in front of body.

```
Wv
              5,291 lbs.
                               (from vehicle specifications)
                               (from body manufacturer)
Wb
              2.100 lbs.
              3.609 lbs.
                               (GVWR - (Wv + Wb + We))
αW
       =
                              (from equipment manufacturer)
       =
              1,000 lbs.
We
       =
                               (from Body Builder's Guide, 3500 Section)
              42.4 in.
Hν
       =
                               (from body manufacturer)
Hb
              107.5 in.
       =
                               (1/2 of payload length + distance from front axle to front of body)
Hp*
              107.5 in.
He
       =
              17.5 in.
                              (from equipment manufacturer)
              5.291 \times 42.4 = 224.338  lbs.-in.
Μv
       =
                                                    (from 8.1)
              2,100 \times 107.5 = 225,750 \text{ lbs.-in.}
                                                    (from 8.2)
Mb
       =
              3,609 \times 107.5 = 387,967 lbs.-in.
                                                    (from 8.3)
Мp
Me
              1,000 \times 17.5 = 17,500 \text{ lbs.-in.}
                                                    (from 8.4)
HCg
       = (224,338 + 225,750 + 387,967 + 17,500)
               (5,291 + 2,100 + 3,609 + 1,000)
HCg
              (855,555)
                         = 71.3 inches
              (12,000)
```

71.3 < 132 inches (132 inches is the wheelbase dimension)

Since HCg for this truck is not greater than the WB or negative (–) (denotes HCg forward of front axle centerline), it exists between the centerlines of the front and rear axles.

NOTE: Hp and Hb dimensions are the same in this example because CG of body and payload happen to be at the same point.

§ 5.26

Bridge Formula Weights

To calculate maximum acceptable axle weights for use on the Interstate Highway System, use the Department of Transportation link shown below.

http://ops.fhwa.dot.gov/freight/sw/brdgcalc/calc_page.htm

COMMODITY AND MATERIAL WEIGHTS

Approximate Weights of Commodities and Materials

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Acetone			50	6.6 / gallon
Alcohol,	Commercial		51	6.8 / gallon
	Proof spirits		57	7.6 / gallon
Alfalfa seed		bushel		60 / bushel
Aluminum,	Pure (cast)		165	4,450 / cu. yard
Apples,	Fresh	basket-bushel		48 / bushel
	Western, box	11.5" x 12" x 20"		50 / box
	New England, box	11.25" x 14.5" x 17.5"		56 / box
	Standard barrel	17" head, 28.5" stave		160 / barrel
	Dried	bushel		24 / bushel
Apricots,	Fresh	bushel		48 / bushel
	Western, box	5.5" x 12" x 20"		23 / box
Artichokes,	Box	10" x 11.5" x 22"		44 / box
Asbestos			153	4,130 / cu. yard
Asparagus,	crate, Loose	11.5" high x 9.75" top		38 / crate
	Bunches	11" bottom x 19.38" long		31 / crate
Avocados,	Box	5.75" x 11.25" x 17.5"		16 / box
Bananas,	Single stem	bunch		45-65 / bunch
Barley		bushel		48 / bushel
Barytes,	Mineral		280	7,560 / cu. yard
Basalt,	Rock		185	5,000 / cu. yard
Beans, dry,	Lima	bushel		56 / bushel
	White	bushel		60 / bushel
	Castor	bushel		46 / bushel
Beans, fresh,	Lima	bushel		39 / bushel
	String	bushel		36 / bushel
		hamper, 5 peck		45 / hamper

Figure 6.1.1

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Beef,	Slack barrel	21" x 30" stave (200 lbs. net)		254 / barrel
Beer,	Wood barrel	.5 barrel (16 gal.)		205 / barrel
	Wood barrel	.25 barrel (8 gal.)		105 / barrel
	Steel barrel	.5 barrel (16 gal.)		190 / barrel
	Steel barrel	.25 barrel (8 gal.)		95 / barrel
	Dutchman	.13 barrel (4 gal.)		51 / barrel
Case carton,*	Regular bottles	17.25" x 11.5" x 9.88"		45 / case
24, 12 oz.	Steinie bottles	18.38" x 12.13" x 7.38"		40 / case
	Tin cans	16.13" x 11" x 5.13"		28 / case
Wooden case,*	Regular bottles	21" x 13.5" x 10"		35 / case
24, 12 oz.	Steinie bottles	22" x 13.75" x 7.5"		46 / case
Beets		bushel		50-60 / bushel
	Small crate	9.75" x 13.75" x 24"		50 / crate
	Western crate	14" x 19" x 24.5"		95 / crate
Berries, crate,	24 pint	9.75" x 9.97" x 20"		25 / crate
	24 quart	11.75" x 11.75" x 24"		48 / crate
	32 quart	15.5" x 11.75" x 24"		63 / crate
Bluegrass seed		bushel		44 / bushel
Bluestone			120	3,240 / cu. yard
Bone			115	3,110 / cu. yard
Borax			110	2,970 / cu. yard
Bran		bushel		20 / bushel
Brick,	Soft	2.25" x 4" x 8.25"		4,320 / thousand
	Common	2.25" x 4" x 8.25"	——	5,400 / thousand
	Hard	2.25" x 4.25" x 8.5"	——	6,480 / thousand
	Pressed	2.38" x 4" x 8.38"	——	7,500 / thousand
	Paving	2.25" x 4" x 8.5"		6,750 / thousand
	Paving block	3.5" x 4" x 8.5"		8,750 / thousand
	Fire	2.5" x 4.5" x 9"		7,000 / thousand

^{*} Note: Beer cases vary as to size and shape. Suggest checking with local source.

Figure 6.1.2

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Broccoli,	Bushel crate	12.75" x 12.75" x 17"		30 / bushel
Brussels sprout	s, Crate	7.75" x 10.5" x 21.38"		26 / crate
Buckwheat		bushel		49 / bushel
Butter, tub,	Small	15" dia. x 5.75"		25 / tub
Standard		15" dia. x 15"		70 / tub
Butter, case,	30 – 1-lb. bricks	10.75" x 8.75" x 10.5"		32 / case
	9-lb. pail	pail		10 / pail
Cabbage		bushel		38 / bushel
	Hamper	1.5 bushel		58 / hamper
	Crate	12.75" x 18.5" x 19"		60 / crate
	Western crate	14" x 19" x 24.5"		85 / crate
	Barrel crate	12.75" x 18.75" x 37.38"		110 / crate
Calf,	Live (average)	per head		140-160 / head
Cantaloupe, crate, Pony		11.75" x 11.75" x 23.5"		58 / crate
	Standard	12.75" x 12.75" x 23.5"		68 / crate
	Jumbo	13.75" x 13.75" x 23.5"		78 / crate
	Pony flat	4.75" x 12.75" x 23.5"		26 / crate
	Standard flat	5.25" x 14.25" x 23.5"		28 / crate
	Jumbo flat	5.75" x 15.25" x 23.5"		32 / crate
	Honeydew (Casaba)	6.38" x 15.13" x 23.5"		35 / crate
Carbolic acid			60	8.0 / gallon
Carrots,	Topped	bushel		55 / bushel
	With tops	bushel		40 / bushel
	Crate	11.75" x 14.13" x 24"		60 / crate
Castor oil			61	8.1 / gallon
Cauliflower		bushel		30 / bushel
	Crate	9.38" x 19" x 24"		50 / crate
Cedar*	(lumber)		30	2,500 / M. Bd. ft
Celery,	Standard crate	11.63" x 22" x 22.63"		70 / crate
	Half crate	10.75" x 13" x 20.38"		35 / crate
	Northern crate	16.5" x 21.25" x 22"		85 / crate

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Cement,	Block	8" x 8" x 16"		42 / each
	Block	8" x 12" x 16"		58 / each
	Portland	sack		94 / sack
	Portland	barrel (4 sacks per)		376 / barrel
Chalk			137	3,700 / cu. yard
Charcoal,	0ak		33	890 / cu. yard
	Pine		23	620 / cu. yard
Cheese,	Small box	15" dia. x 5.25"		25 / box
	Medium box	15" dia. x 7.5"		35 / box
	Large box	15" dia. x 15"		70 / box
Cherries,	Unstemmed	bushel		56 / bushel
	Stemmed	bushel		64 / bushel
	Lug box	5.63" x 11.88" x 19.75"		17 / box
Chestnut*	(lumber)		37	3,080 / M. Bd. ft.
Chestnuts		bushel		50 / bushel
Chickens,	Live, broilers (20 avg.)	standard crate		58 / crate
	Fowl (12 avg.)	standard crate		78 / crate
	Standard crate,	empty 24" x 35" x 13"		18 / crate
Cinder blocks		8" x 8" x 16"		35 / each
		8" x 12" x 16"		45 / each
Cinders			50	1,350 / cu. yard
Clay,	Dry lumps		85	2,300 / cu. yard
	Wet lumps		110	2,970 / cu. yard
	Wet packed		135	3,650 / cu. yard
	Fire		125	3,375 / cu. yard
Cork			15	405 / cu. yard
Corn,	Ear	bushel		35 / bushel
	Shelled	bushel		56 / bushel
	Sweet corn (green)	bushel		43 / bushel
	Crate	12.88" x 12.88" x 24"		60 / crate
Corn meal		bushel		44 / bushel

Figure 6.2.1

Figure 6.2.2

^{*}Kiln dried lumber averages 10% to 15% lighter, and green lumber 40% to 50% heavier, than air dried.

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Corn oil			58	7.8 / gallon
Corn syrup			86	11.5 / gallon
Cotton,	Gin bale	30" x 48" x 54"		515 / bale
	Standard bale	24" x 28" x 56"		515 / bale
	Comp. bale	20" x 24" x 56"		515 / bale
Cotton seed		bushel		32 / bushel
Cottonseed oil			58	7.8 / gallon
Cottonwood*	(lumber)		37	3,080 / M. Bd. ft.
Cow,	Live-Feeder (average)	per head		600 / head
	Butcher (average)	per head		800 / head
	Butcher steer (average)	per head		1100 / head
Cranberries,	1/4 barrel box	9.5" x 11" x 14"		28 / box
	1/2 barrel box	12.25" x 14.75" x 22"		60 / box
Cream			64	8.5 / gallon
Creosote			68	9.2 / gallon
Crude oil			56	7.5 / gallon
Cucumbers		bushel		55 / bushel
	Crate	9.75" x 13.75" x 24"		75 / crate
	Case	5" x 13.25" x 19"		26 / case
Earth,	Loose, dry loam		76	2,050 / cu. yard
	Packed		95	2,565 / cu. yard
	Wet		125	3,375 / cu. yard
Eggplant,	Hamper	bushel		40 / bushel
	Crate	14" x 11.75" x 24"		54 / crate
Eggs,	30 dozen crate	12" x 12" x 26"		55 / crate
Elm,*	Soft		38	3,170 / M. Bd. ft.
	Rock		45	3,750 / M. Bd. ft.
Fertilizer,	Commercial	burlap bag		100-200 / bag
Fir,*	Douglas		32	2,670 / M. Bd. ft.
	Eastern		25	2,080 / M. Bd. ft.

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Fish, fresh,	Barrel	19" head, 29" stave		300 / barrel
	1/2 Barrel	18.5" head, 23.5" stave		160 / 1/2 barrel
Flour,	Barrel	19.13" head, 30" stave		215 / barrel
Fuel oil,	Furnace grade		56	7.5 / gallon
	Diesel engine		52	7.0 / gallon
Furniture,	Household		7	1,915 / cu. yard
Garbage,	Dry, paper wrapped		15-30	405-810 / cu. yard
	Wet		50	1,240 / cu. yard
Gasoline			45	6.0 / gallon
Glass,	Common window			162 / cu. foot
	Plate or crown			161 / cu. foot
	1/4" plate			3.3 / sq. foot
Glue			80	2,160 / cu. yard
Glycerine			79	10.5 / gallon
Grapefruit,	Western box	11.5" x 11.5" x 24"		68 / box
	Southern box	12.75" x 12.75" x 27"		90 / box
Grapes,	Basket	bushel		48 / box
	Lug box	5.63" x 16.38" x 17.5"		30 / box
	Western keg	15.5" dia. x 14"		45 / keg
	Basket	12 quart		18 / basket
Gravel,	Dry		95	2,565 / cu. yard
	Wet		125	3,375 / cu. yard
Greens		bushel		25 / bushel
Groceries,	Misc. assorted		30	810 / cu. yard
Нау,	Bale	26" x 30" x 46"		210 / bale
	Bale	17" x 22" x 43"		115 / bale
	Bale	14" x 16" x 43"		85 / bale
Hog,	Live (average)	per head		225-250 / head
Honey			90	12.0 / gallon
Horse,	Live (average)	per head		1,200-1,500 / head

Figure 6.3.1

Figure 6.3.2

^{*}Kiln dried lumber averages 10% to 15% lighter, and green lumber 40% to 50% heavier, than air dried.

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Horseradish ro	oots	bushel		35 / bushel
Ice			57	1,540 / cu. yard
Ice (mfg.),	Block	11" x 22" x 32"		250 / block
	Block	14" x 14" x 40"		255 / block
	Block	11" x 22" x 56"		440 / block
Ice Cream,	2.5 gallon can, Full	9" dia. x 11"		18 / can
	Empty			6 / can
	5 gallon can, Full	9" dia. x 21"		35 / can
	Empty			11 / can
Kale		bushel		25 / bushel
Kerosene			50	6.6 / gallon
Lamb,	Live (average)	per head		75-85 / head
Lard,	Barrel	18" head, 30" stave		425 / barrel
Lath,	Standard length 29"	Packed in bundles of 50		25 / bundle
		Average bundle, dia. 9"		
Leather,	Dry		55	1,485 / cu. yard
	Wet		65	1,755 / cu. yard
Lemons,	Western box	10" x 13" x 25"		80 / box
	Southern box	12.75" x 12.75" x 27"		90 / box
Lentils		bushel		60 / bushel
Lettuce,	Hamper	bushel		25 / bushel
	Hamper	1.5 bushel		38 / hamper
	Basket	8.5" x 11.75" x 21.38"		17 / basket
	Crate	18.75" x 17.5" x 24.5"		75 / crate
	1/2 crate	9.5" x 13.5" x 24.5"		40 / 1/2 crate
Lime,	Hydrated	bushel		30 / bushel
	Barrel (small)	16.5" head, 27.5" stave	62	210 / barrel
	Barrel (large)		62	320 / barrel
Limes,	Western box	10" x 13" x 25"		80 / box
	Southern box	12.75" x 12.75" x 27"		90 / box

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Linseed oil			59	7.9 / gallon
Lubricating oil			52	7.0 / gallon
Malt,	Barley	bushel		28 / bushel
	Rye	bushel		32 / bushel
	Brewer's grain	bushel		40 / bushel
Maple syrup		gallon	82	11.0 / gallon
Maple,*	Hard (lumber)		44	3,670 / M. Bd. ft.
	Soft		34	2,830 / M. Bd. ft.
Meal-corn		bushel		44 / bushel
Milk,	Bulk		64	8.6 / gallon
	5 gallon can	10.25" dia. x 19"		62 / can
	10 gallon can	13" dia. x 23"		115 / can
	Crate, 20.5 pt. bottles	8.5" x 12.75" x 16.75"		33 / crate
	20 pt. bottles	8.5" x 12.75" x 16.75"		54 / crate
Millet		bushel		50 / bushel
Molasses			90	12.0 / gallon
	Barrel	20.25" head, 34" stave		675 / barrel
Mortar,	Lime		110	2,970 / cu. yard
Mud,	Flowing		106	2,860 / cu. yard
	Packed		125	3,375 / cu. yard
Muriatic acid,	40%		40	10.0 / gallon
Naptha,	Petroleum		42	5.6 / gallon
Nitric acid,	91%		94	12.5 / gallon
Oak-red,*	Black		42	3,500 / M. Bd. ft.
	White		48	4,080 / M. Bd. ft.
0ats		bushel		32 / bushel
Okra,	Hamper	1/2 bushel		18 / hamper
	Hamper	bushel		34 / bushel
Oleomargarine,	(mfgtub)	21" head, 34" stave		70 / tub
	Cases			15-65 / case

Figure 6.4.2

^{*}Kiln dried lumber averages 10% to 15% lighter, and green lumber 40% to 50% heavier, than air dried.

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Olive oil			58	7.7 / gallon
Onions, dry,	Basket	bushel		55 / bushel
	Bag	17" x 32"		50 / bag
	Crate	20.5" x 11.5" x 10.5"		58 / crate
	Green (with tops)	bushel		32 / bushel
Oranges,	Western box	11.5" x 11.5" x 24"		80 / box
	Southern box	12.75" x 12.75" x 27"		90 / box
	Bushel box	10.75" x 10.75" x 23.5"		65 / box
Oysters (shuck	ed or meats)			
	Crate with 5.1 gal. cans	18" x 12" x 24"	(11.5 lbs. per gal.)	67 / crate
	With shells (bags)	bushel		75 / bushel
Paint,	Lead and oil		127	17 / gallon
Paper,	Average solid		58	1,565 / cu. yard
	Newspaper rolls	34.25" x 35" dia.		500 / roll
		51.5" x 35" dia.		1,000 / roll
		64.25" x 35" dia.		1,300 / roll
Paraffin			56	1,510 / cu. yard
Parsley,	Bushel crate	12.75" x 12.75" x 17"		30 / crate
Parsnips		bushel		50 / bushel
Peaches,	Basket	bushel		48 / bushel
	1/2 bushel			25 / basket
	Crate	10.5" x 11.25" x 24"		50 / crate
	Western box	5.5" x 12.25" x 19.75"		22 / box
Peanuts,	Unshelled	bushel		22 / bushel
	Bag			100 / bag
Peanut oil			57	7.6 / gallon
Pears,	Basket	bushel		50 / bushel
	Western box	9.63" x 12.13" x 19.75"		51 / box
Peas,	Dry	bushel		60 / bushel
	Fresh hamper	bushel		35 / hamper
	Hamper	40 quarts		45 / hamper

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Pecans,	Large bag			100 / bag
	Small bag			50 / bag
Peppers,	Basket	bushel		25 / basket
	Crate	14.13" x 11.75" x 24"		45 / crate
Petroleum			56	7.5 / gallon
Phosphate rock			200	5,400 / cu. yard
Pine,*	Long leaf		44	3,670 / M. Bd. ft.
	North Carolina		36	3,000 / M. Bd. ft.
	Oregon		32	2,670 / M. Bd. ft.
	Red		30	2,500 / M. Bd. ft.
	White		26	2,170 / M. Bd. ft.
	Yellow, long leaf		44	3,670 / M. Bd. ft.
	Short leaf		38	3,170 / M. Bd. ft.
Pineapples,	Crate	11" x 12.5" x 36"		85 / crate
Pitch			70	1,900 / cu. yard
Plums,	Basket	bushel		56 / bushel
	Western box	5.63" x 16.38" x 17.5"		25 / box
Pomegranates,	Box	6.5" x 12" x 24.63"		30 / box
Popcorn,	Ear	bushel		70 / bushel
	Shelled	bushel		56 / bushel
Poplar*			27	2,250 / M. Bd. ft.
Porcelain			150	4,050 / cu. yard
Pork (dressed),	Barrel (200 lbs. net)	18" head, 29" stave		240 / barrel
Potatoes,	Sweet	bushel		55 / bushel
	White or Irish	bushel		60 / bushel
	Bag	1.67 bushel		102 / bag
	Barrel	17.13" head, 28.5" stave		185 / barrel
Prunes,	Вох	5.63" x 16.38" x 19.75"		25 / box
	Box	5.63" x 11.88" x 19.75"		22 / box
Quinces		bushel		50 / bushel
		1		

Figure 6.5.2

^{*}Kiln dried lumber averages 10% to 15% lighter, and green lumber 40% to 50% heavier, than air dried.

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Radishes,	Basket	bushel		34 / bushel
	Crate	9.75" x 13.75" x 24"		40 / crate
Redwood*			30	2,500 / M. Bd. ft.
Resin			68	1,835 / cu. yard
Rhubarb (pie plant)		bushel		50 / bushel
	Box	5.25" x 11.5" x 22"		24 / box
Rice,		Unhulled bushel		43 / bushel
Rock,	Crushed (average)		100	2,700 / cu. yard
Romaine,	Crate	13.88" x 18.88" x 24.5"		64 / crate
	Crate	12.25" x 13" x 15.25"		27 / crate
Rubber goods			94	2,540 / cu. yard
Rutabagas		bushel		56 / bushel
Rye		bushel		56 / bushel
Salt, rock,	Solid		136	3,670 / cu. yard
	Coarse		45	1,215 / cu. yard
	Fine		50	1,350 / cu. yard
	Barrel (average)			280 / barrel
Sand, fine,	Dry		110	2,970 / cu. yard
	Wet		125	3,375 / cu. yard
Sand, coarse,	Dry		95	2,565 / cu. yard
	Wet		120	3,240 / cu. yard
Sand,	Mixed		115	3,100 / cu. yard
Sandstone,	Solid		147	3,970 / cu. yard
	Crushed		86	2,325 / cu. yard
Shale,	Solid		172	4,645 / cu. yard
	Crushed		92	2,485 / cu. yard
Sheep,	Live (average)	per head		125-150 / head
Shingles,	Bundle	Pkg. in bndls. of 200-250		50 / bundle
		Size (avg.) 24" x 20" x 10"		
Snow,	Moist-packed		50	1,350 / cu. yard

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Soft drinks,	Half depth bottle box			
	24-6 to 8 oz. bottles	12.25" x 18.75" x 8.5"		39 / box
	Full depth bottle box			
	12-24 to 32 oz. bottles	13.38" x 18.5" x 12.25"		60 / box
Sorghum syrup)		86	11.5 / gallon
Soybeans		bushel		60 / bushel
Soybean oil			58	7.7 / gallon
Spinach,	Hamper	bushel		20 / bushel
	Basket	bushel		27 / bushel
Spruce*			28	2,330 / M. Bd. ft.
Squash		bushel		46 / bushel
Starch			96	2,590 / cu. yard
Stone,	Crushed, (average)		100	2,700 / cu. yard
	Rip-rap		65	1,755 / cu. yard
Straw,	Bale	17" x 22" x 42"		110 / bale
	Bale	26" x 30" x 46"		180 / bale
Street sweepin	gs		32	865 / cu. yard
Sugar			100	2,700 / cu. yard
Sugar,	Bag	(100 lbs. net)		101 / bag
	Barrel (22 lbs. empty)	19.13" head, 30" stave		345 / barrel
	Case	24 – 5-lb. cartons		135 / case
	Case	60 – 2-lb. cartons		135 / case
Sugar cane syr	rup		85	11.3 / gallon
Sulphur			125	3,375 / cu. yard
Sulfuric acid, 87%			112	15 / gallon
Sweet corn,	Basket	bushel		45 / bushel
	Crate	13" x 13" x 24"		60 / crate
Sycamore*			37	3,080 / M. Bd. ft.
Tallow			60	1,620 / cu. yard

Figure 6.6.1

Figure 6.6.2

^{*}Kiln dried lumber averages 10% to 15% lighter, and green lumber 40% to 50% heavier, than air dried.

Product		Size of Container	Lbs. Per Cu. Ft.	No. of Lbs. / Per
Tanks, Acetylene, 102 cu. foot		empty		70 / tank
		filled		75 / tank
	310 cu. foot	empty		200 / tank
		filled		220 / tank
Tanks, Oxygen,	150 cu. foot	empty		80 / tank
		filled		92 / tank
	300 cu. foot	empty		133 / tank
		filled		153 / tank
Tar			65	1755 / cu. yard
Tile,	Solid		115	3,100 / cu. yard
	Partition (construction)		40	1,080 / cu. yard
Tomatoes,	Basket	bushel		55 / bushel
	Lug box	7.25" x 14" x 17.5"		35 / box
	Crate	10.5" x 11.25" x 24"		48 / crate
	Basket	8.5" x 8.75" x 20"		18 / basket
	Basket (paper)	4.25" x 8.5" x 16.25"		9 / basket
	Basket (wood)	5.5" x 7.25" x 16.5"		10 / basket
Turpentine			54	7.2 / gallon
Turnips,	Basket	bushel		54 / bushel
Vetch seed		bushel		60 / bushel
Vinegar			64	8.5 / gallon
Walnuts,	Bulk	bushel		50 / bushel
	Bag	2 bushel		100 / bag
Water,	Fresh		63	8.4 / gallon
Wheat,	Bulk	bushel		60 / bushel
	Bag	1.5 bushel		90 / bag
Wool,	Pressed		82	2,215 / cu. yard

^{*}Kiln dried lumber averages 10% to 15% lighter, and green lumber 40% to 50% heavier, than air dried.

Figure 6.7.1

3500,4500 GAS

Specifications

Model	3500 Gas	4500 Gas				
GVWR	12,000 lbs.	14,500 lbs.				
WB	109 in., 132.5 in., 150 in., 176 in.					
Engine	GMPT 8-cylinder, V Block 4-cycle, OHV, water-cooled, Sequential Port Fuel Injection					
Model/Displacement	GMPT-V8/365 CID	(6.0 liters)				
HP(Gross)	297 HP @ 4,30	0 RPM				
Torque (Gross)	372 lbsft. torque @					
	Sequential Port Fuel Injection (SFI), mass air flow	meter, powertrain control module (PCM),				
Equipment	onboard diagnostics, oxygen sensors, catalytic con	vertor, map sensor, with external oil cooler,				
	engine cruise control, High Idle Mo	de and Rear engine cover.				
Transmission	6L90 Hydra-Matic 6-speed automatic w/					
Steering	Integral power steering 18.8-20.9:1 ratio. Ti					
Front Axle	Reverse Elliot "I"-Beam ra	ated at 6,830 lbs.				
Suspension	Semi-elliptical steel alloy tapered leaf springs w					
GAWR	4,860 lbs.	6,630 lbs.				
Rear Axle	Full-floating single speed with hypoid gearing rated at 11,020 lbs.					
Suspension	, ,	Semi-elliptical steel alloy multi-leaf springs and shock absorbers.				
GAWR	8,840 lbs.	11,020 lbs.				
Wheels	16 x 6.0 6-hole disc wheels, painted white.	19.5 x 6.0 6-hole disc wheels, painted white.				
Tires	215/85R-16E (10 ply) LRR (Low Rolling Resistance)	225/70R-19.5G (14 ply) LRR (Low Rolling Resistance)				
	tubeless steel belted radials, all season, front and rear	tubeless steel belted radials, all season, front and rear				
Brakes		brakes with EBD (Electronic Brake Distribution System				
		c front and self-adjusting outboard mounted drum rear.				
	The parking brake is mechanical, cable-actuated, internal expanding drum type, transmission mounted.					
Food Tools	Four-channel antilock b					
Fuel Tank		uel tank. Mounted between the frame rails				
Frame		(mounted in tank). Through the rail fuel fill.				
Frame	Ladder type channel section straight frame rail 33.5 i					
Cab	Yield strength 44,000 psi section modulus 7.20 All-steel, low cab forward, BBC 70.9 in., 45°					
Cab	TRICOT covered high back driver's seat					
Equipment						
Equipment	Dual cab-mounted exterior mirrors. With integral convex mirrors. Tilt and telescoping steering column.					
Electrical		Tinted glass, air conditioning standard.				
Licotriodi	12-volt, negative ground, maintenance-free battery located on frame, 750 CCA each, 145-amp alternator with integral regulator.					
		<u> </u>				
Options	see page 7.3 for	roption				
	1					

NOTE: These selected specifications are subject to change without notice.

Figure 7.2.1

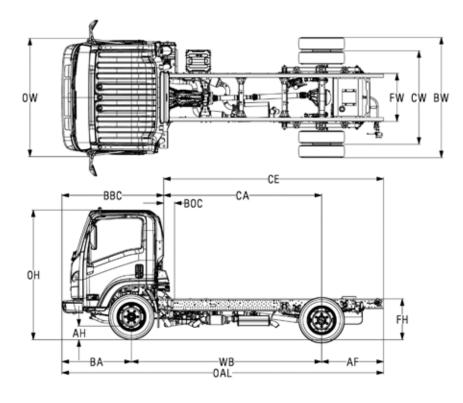


Figure 7.2.2

Variable Chassis Dim	nensions
----------------------	----------

Unit	WB	CA*	CE*	OAL	ΑF
Inch	109.0	86.5	129.6	200.5	43.1
Inch	132.5	110.0	153.1	224.0	43.1
Inch	150.0	127.5	170.6	241.5	43.1
Inch	176.0	153.5	196.6	267.5	43.1
*Effect	ive CA 8	CE are	CA or C	E less B	OC

Dimension Constants: 12,000 GVW

AH	7.5	BW	84.1	FH	31.8
AW	65.6	CW	65.0		
BA	48.4	FW	33.5		
BBC	70.9	OH	90.0		
BOC	6.5	OW	81.3		

12,000-lb. GVWR Automatic Transmission Model Chassis Cab and Maximum Payload Weights

Model	RPO	WB Unit	Front	Rear	Total	Payload
P 11003	EB4	109 LB.	3302	1720	5022	6978
P 12003	FNJ	132.5LB.	3370	1745	5115	6885
P 13003	FWH	150 LB.	3410	1749	5159	6841
P 14003	FNW	176 LB.	3449	1769	5218	6782

Dimension Constants; 14,500 GVW

Code	Inches	Code	Inches
AH	8.3	BW	84.1
AW	65.6	CW	65.0
BA	48.4	FW	33.5
BBC	70.9	OH	91.1
BOC	6.5	OW	81.3
FH	33.0		

14,500-lb. GVWR Automatic Transmission Model Chassis Cab and Maximum Payload Weights

Model	RPO	WB	Unit	Front	Rear	Total	Payload
P 31003	EB4	109	LB.	3430	1896	5326	9174
P 32003	FNJ	132.	5LB.	3497	1921	5418	9082
P 33003	FWH	150	LB.	3538	1925	5463	9037
P 34003	FNW	176	LB.	3627	1896	5523	8977

Vehicle Weight Limits:

GVWR

 Designed Maximum
 12,000 lbs.
 14,500 lbs.

 GAWR, Front
 4,860 lbs.
 6,630 lbs.

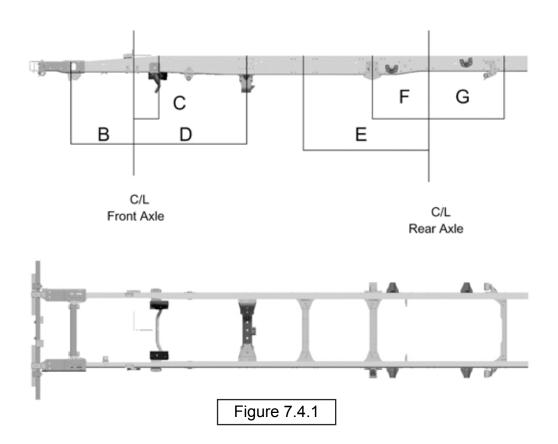
 GAWR, Rear
 8,840 lbs.
 11,020 lbs.

Technical Notes:

Chassis Curb Weight reflects standard equipment and fuel but no driver or payload.

Maximum Payload Weight is the allowed maximum for equipment, body, payload and driver and is calculated by subtracting chassis curb weight from the GVWR.

RPO	DESCRIPTION STANDARD CAB	Weight (LBS) Front/Rear
G7M	Air deflector roof mounted (not available in Crew Cab)	64.0 / 0.0
MTE	Fire extinguisher and triangle kit mounted in rear organizer (2)	18.6 / 0.0
KO5	Engine Block Heater (120V 600W)	1.0 / 0.0
UL5	Delete Standard Radio	-3.0 / 0.0
UIZ	AM/FM/CD radio with Aux input/USB port and Bluetooth	0.0 / 0.0
DB6	Heated dual remote control mirrors (15" head)	2.0 / 0.0
DB8	Heated mirrors	0.3/0.0
TBD	Mirror Bracket for 102 "wide body	1.0 / 0.0
9W8	seat covers standard cab (4)	5.8 / 0.0
IX2	Rear Body Dome Lamp Switch	0.4 / 1.5
UZF	Back up alarm	0.0 / 1.5
V22	Chrome Grille	1.0 / 0.0
9C2 A1G	65 mph top speed limit (max cruise speed 60mph) Suspension Drivers Seat	0.00/0.00

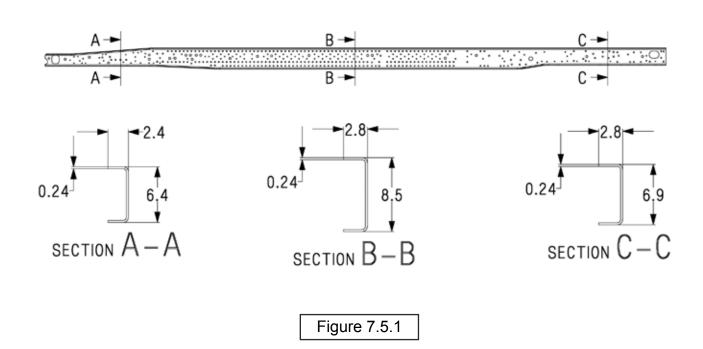

⁽³⁾ Standard model specifications with LSD (Limited Slip Differential)

High Idle Mode

Provides 1200 rpm engine speed when vehicle is in park or neutral with parking brake set. Activated by pressing main cruise switch and then turning and holding cruise set switch for 3 seconds. Cruise light will blink slowly in this mode.

7.4

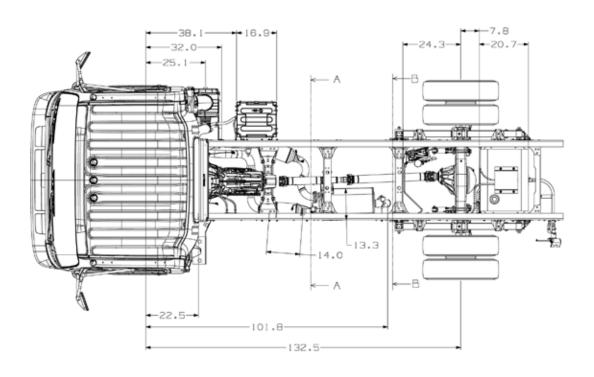
Frame and Crossmember Specifications

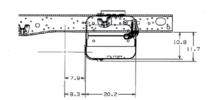

Wheelbase	Frame	Crossmember Type/Location						
	Thick		В	С	D	Е	F	G
109.0	0.24		28.3	7.9	AA 51.5	_	CC 24.2	DD 33.8
132.5	0.24		28.3	7.9	AA 51.5	BB 57.5	CC 24.2	DD 33.8
150.0	0.24		28.3	7.9	AA 51.5	BB 57.9	CC 24.2	DD 33.8
176.0	0.24		28.3	7.9	AA 51.5	BB 74.4	CC 24.2	DD 33.8

A/T = Automatic Transmission

Figure 7.4.2

7.5


Frame Chart



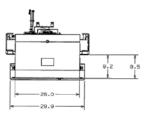

Wheelbase	Frame FL	Frame Thickness
109.0	182.5	0.24
132.5	206.1	0.24
150.0	223.8	0.24
176.0	249.8	0.24

Figure 7.5.2

Frame Chart

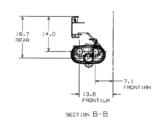


Figure 7.6.1

Chassis Dimensions

Dimensions					
Α	В	С	D		
WB	CA	CE	OAL		
109.0	86.5	129.6	200.5		
132.5	110.0	153.1	224.0		
150.0	127.5	170.6	241.5		
176.0	153.4	196.6	264.5		

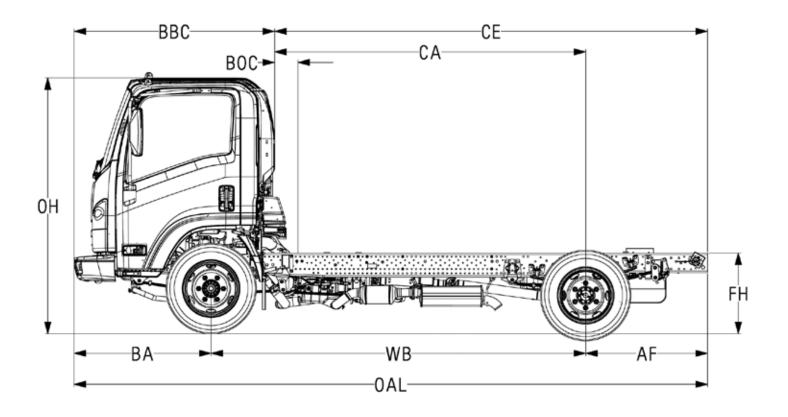


Figure 7.7.1

Chassis Dimensions

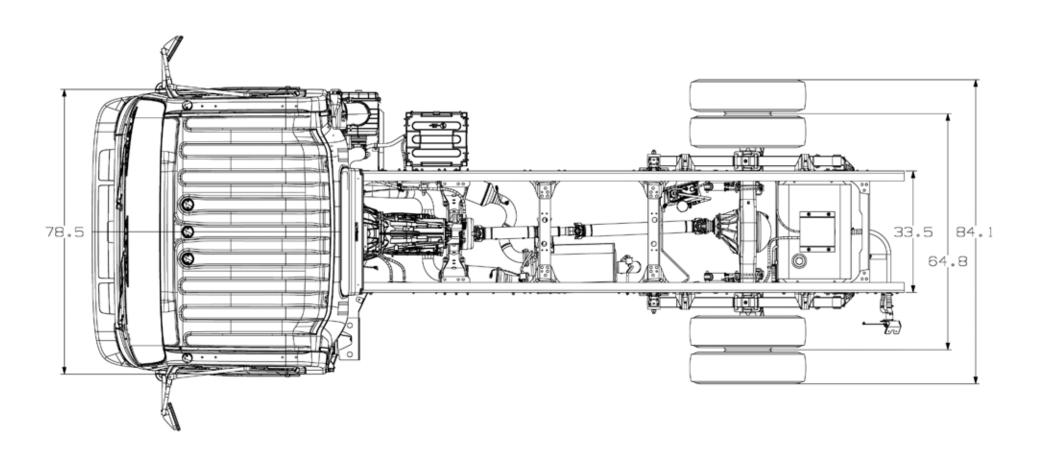
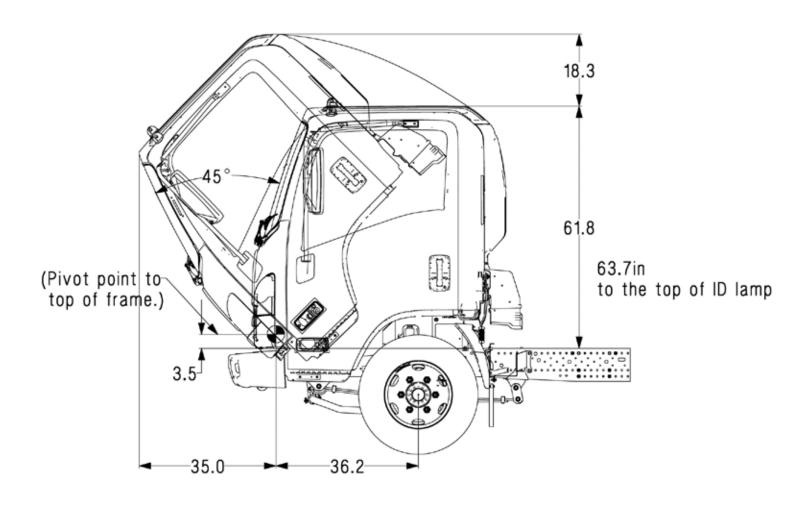
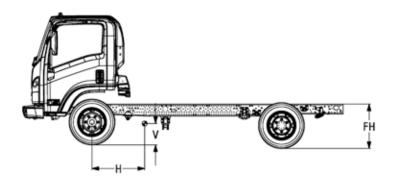


Figure 7.8.1

Cab Tilt Illustration




Figure 7.9.1

Center of Gravity

The center of gravity of the chassis cab.

GVWR	WB	V	H Auto. Trans.
	109	23.8	37.5
12,000	132.5	23.7	44.5
	150	23.6	49.7
	176	23.6	57.5
	109	23.8	38.3
14,500	132.5	23.7	45.3
	150	23.7	50.6
	176	23.6	58.4

Figure 7.10.1

The maximum vertical center of gravity must not be exceeded at maximum GVWR and rated front and rear GAWR. The center of gravity maximum is 63" (1600mm) above the ground. The horizontal center of gravity must be located between the front and rear axles.

Figure 7.10.2

Dimensions in inches

NOTE: The maximum dimensions for a body installed on the LCF Gas are 102 inches wide (outside) with 102" wide mirror brackets installed and 91 inches high (inside). Any larger body applications must be approved by GM Upfitter Engineering. Contact us on www.gmupfitter.com.

Front Axle Chart

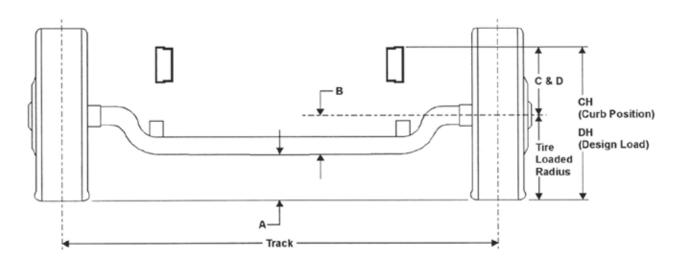


Figure 7.11.1

Formulas for calculating height dimensions:

A = Tire Loaded Radius - B

C = Centerline of Axle to Top of Frame Rail at Curb Position
D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius

DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	А	В	С	D	СН	DH	Track	Tire F	Radius
										Unload	Load
215/85R 16-E	12,000 lbs.	4,860 lbs.	7.5	6.6	12.9	12.2	27.5	26.3	65.5	14.6	14.1
225/70R 19.5	14,500 lbs.	6,630 lbs.	8.3	6.6	13	11.5	29	26.4	65.5	16	14.93

Figure 7.11.2

Rear Axle Chart

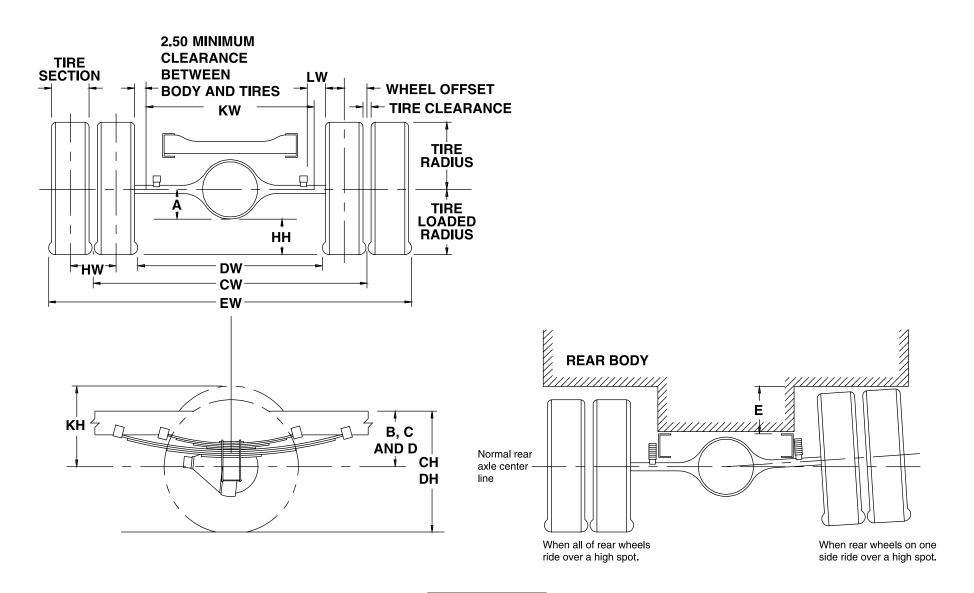


Figure 7.12.1

		De	efinitions
Α	Centerline of axle to bottom of axle bowl.	DW	Minimum distance between the inner surfaces of the rear tires.
В	Centerline of axle to top of frame rail at metal-to-metal position.		
С	Centerline of axle to top of frame rail at curb position.	EW	Maximum Rear Width: Overall width of the vehicle measured at the outermost surface of the rear tires.
D	Centerline of axle to top of frame rail at design load.	HH	Rear Tire Clearance: Minimum clearance between the rear axle and the ground-line.
E	Rear Tire Clearance: Minimum clearance required for tires and chain measured from the top of the frame at the vertical centerline of the rear axle, when rear wheels on one side ride over a high spot.	HW	Dual Tire Spacing: Distance between the centerlines of the tires in a set of dual tires.
СН	Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at curb position.	KH	Tire Bounce Clearance: Minimum distance required for tire bounce as measured from the centerline of the rear axle and the top of the rear tire when one wheel rides over a high spot.
DH	Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at design load.	CW	Track Dual Rear Wheel Vehicles: Distance between the centerlines of the dual wheels measured at the ground-line.
	Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance		See Tire Chart for Values

Figure 7.13.1

	Formulas for Calculating Rear Width and Height Dimensions								
CW	CW = Track								
СН	= Tire loaded radius + C	JH	= KH – B						
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches						
DW	= Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches						
EW	W = Track + 2 tire sections + tire clearance								

Figure 7.13.2

Tire	GAWR	Track CW	A	В	C	D	E
215/85R 16-E	8,840 lbs.	65.0	6.5(A/T)	9.3(A/T)	15.4	13.3/13.0	7.8
225/70R 19.5-F	11,020 lbs.	65.0	7.7 (A/T)	9.3 (A/T)	15.6	13.4	8.4

Figure 7.13.3

Suspension Deflection Charts – 3500,4500 Gas

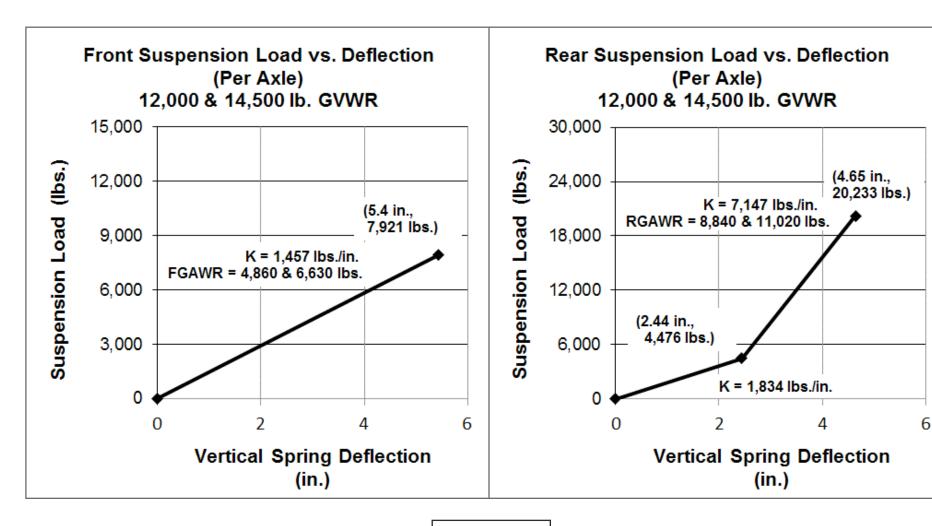


Figure 7.14.1

₹ 7.15

Tire and Disc Wheel Chart – 3500

	Tire L	oad Limit and Co	ld Inflation Press	sures	Maximum Tire		
Tire Size	Sir	ngle	Du	ıal	Front	Rear	GVWR (Lb.)
	Lb.	PSI	Lb.	PSI	2 Single	4 Dual	
215/85R 16-E	2,430	70	2,210	70	4,860	8,840	12,000

Figure 7.15.1

			Tire R	adius				
Tire Size	GVWR (Lb.)	Loa	ded	Unlo	aded	Tire Section	Tire Clearance	Design Rim
		Front	Rear	Front	Rear	Width		Width
215/85R 16-E	12,000	14.05	14.05	14.6	14.6	8.54	1.46	6.0

Figure 7.15.2

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
			1.6142	0.8268						
16 X 6 K	6 JIS	8.75	(41 mm) BUD HEX	(21 mm) SQUARE	325 ft-lb. (440 N•m)	6.46	5.0	0.35	5º DC	Steel TOPY

*O.D. Wrench Sizes

Figure 7.15.3

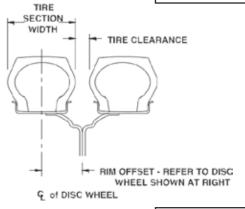
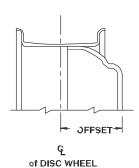



Figure 7.15.4

₹ 7.16

Tire and Disc Wheel Chart – 4500

	Tire L	oad Limit and Co	ld Inflation Press	ures	Maximum Tire		
Tire Size	Tire Size Single		Dι	ıal	Front	Front Rear	
	Lb.	PSI	Lb.	PSI	2 Single	4 Dual	
225/70R 19.5-G	3,315	85	3,115	85	6,630	12,460	14,500

Figure 7.16.1

			Tire R	adius				
Tire Size	GVWR (Lb.)	Loa	ded	Unlo	aded	Tire Section	Tire Clearance	Design Rim
		Front	Rear	Front	Rear	Width		Width
225/70R 19.5-G	14,500	15.24	15.28	16.10	16.10	8.9	1.1	6.0

Figure 7.16.2

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
			1.6142	0.8268						
19.5 x 6.00 RW	6 JIS	8.75	(41 mm)	(21 mm)	325 ft-lb.	6.46	5.0	0.37	15º DC	Steel
			BUDHEX	SQUARE	(440 N•m)					ACCURIED

*O.D. Wrench Sizes

Figure 7.16.3

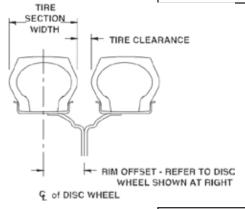
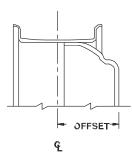
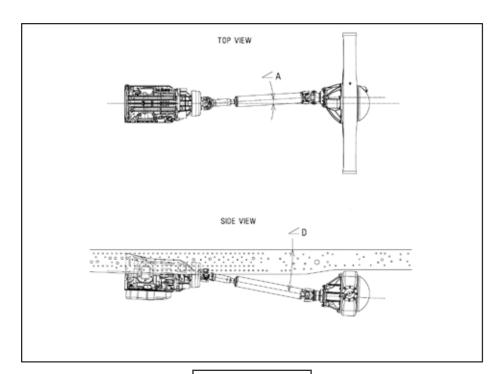




Figure 7.16.4

of DISC WHEEL

Propeller Shaft

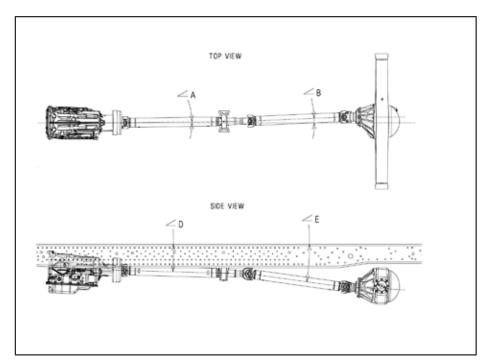


Figure 7.17.1

Figure 7.17.2

Wheelbase	Тор	View	Side View					
(in.)	∠A	∠B	∠D	∠E	Trans	Rear Axle		
109	3.2°	-	9.1°	-	2.5°	2.5°		
132.5	1.5°	2.3°	3.0°	7.7°	2.5°	2.5°		
150	0.8°	2.5°	1.5°	8.0°	2.5°	2.5°		
176	0.6°	1.7°	2.0°	4.5°	2.5°	2.5°		

NOTE: 1. Angles provided in table are relative to the frame angle. Please take this into consideration for service measurements.

^{2.} Driveline angles are based on the chassis curb weight which includes standard equipment, fuel but no driver, body or payload.

Propeller Shaft

Wheelbase	109	132.5	150	176
No. of Shafts	1	2	2	2
Trans. Type	A/T	A/T	A/T	A/T
Shaft #1 O.D. (Inches)		3.	25	
Thickness (Inches)		0.0	906	
L (Inches)	37.55	18.15	35.47	46.1
Туре	A	В	В	В
Shaft #2 O.D. (Inches)		3.	25	
Thickness (Inches)		0.0	906	
L (Inches)	N/A	33.78	34.17	49.52
Туре	N/A	С	С	С

Figure 7.18.1

Туре	Description	Illustration
Туре А	1st shaft in 1-piece driveline	
Type B	1st shaft in 2-piece driveline	
Type C	2nd shaft in 2-piece driveline	

Figure 7.18.2

Brake System Diagram, 12,000 GVW

Vacuum Over Hydraulic

Please refer to Introduction Section of book for antilock system cautions and wheelbase modification requirements.

Legend for 3500, 3500HD, 4500, 4500HD, 4500XD Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Vacuum Pump
- (4) Check Valve
- (5) Exhaust Brake Valve
- (6) Magnetic Valve
- (7) Check Valve (One-way Valve)
- (8) Vacuum Tank
- (9) 4-Way Connector
- (10) With Metering Valve
- (11) W/O Metering Valve
- (12) Brake Fluid Reservoir
- (13) Electric Vacuum Pump
- (14) Master Cylinder
- (15) Vacuum Booster (Servo Unit)
- (16) Front Wheel Cylinder

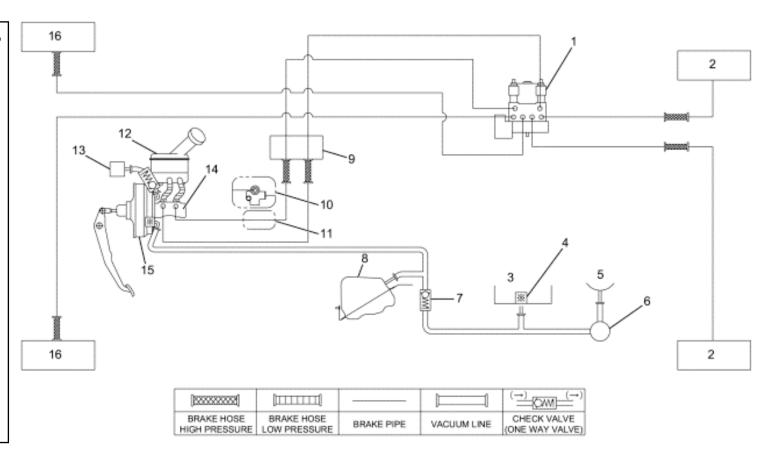


Figure 7.19.1

Brake System Diagram, 14,500 GVW

Vacuum Over Hydraulic

Please refer to Introduction Section of book for antilock system cautions and wheelbase modification requirements.

Legend for 3500, 3500HD, 4500, 4500HD, 4500XD Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Vacuum Pump
- (4) Check Valve
- (5) Exhaust Brake Valve
- (6) Magnetic Valve
- (7) Check Valve (One-way Valve)
- (8) Vacuum Tank
- (9) 4-Way Connector
- (10) With Metering Valve
- (11) W/O Metering Valve
- (12) Brake Fluid Reservoir
- (13) Electric Vacuum Pump
- (14) Master Cylinder
- (15) Vacuum Booster (Servo Unit)
- (16) Front Wheel Cylinder

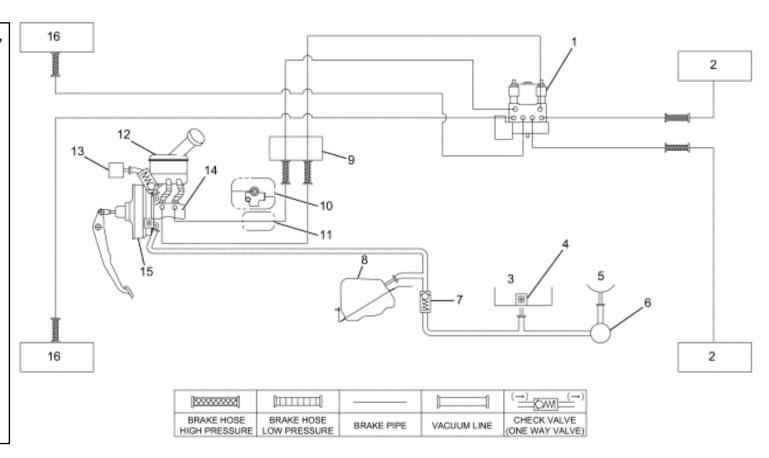


Figure 7.20.1

7.21

High Idle Mode

The high idle mode is the function that raises engine speed by operation of the driver when the vehicle is stationary. PIM performs the high idle mode control when the condition for operating is met. The PIM outputs the idle up command to the ECM and will blink the cruise control set indicator lamp during the high idle mode control.

Condition for Operating the High Idle Mode Control

The following conditions are met longer than 3 seconds:

- Engine is running.
- The selector lever is in "P" (Park) or "N" (Neutral) position.
- The accelerator pedal position is less than 25 percent.
- · The brake switch is OFF.
- The cruise control main switch is ON.
- The cruise control set switch is ON.

Condition for Cancelling the High Idle Mode Control

Each of following conditions is met:

- Engine is stopped.
- The selector lever is in other than "P" (Park) or "N" (Neutral) position.
- The accelerator pedal position is 25 percent or more.
- The brake switch is ON.
- · The cruise control main switch is OFF.
- The cruise control set switch is OFF.

Through the Rail Fuel Fill

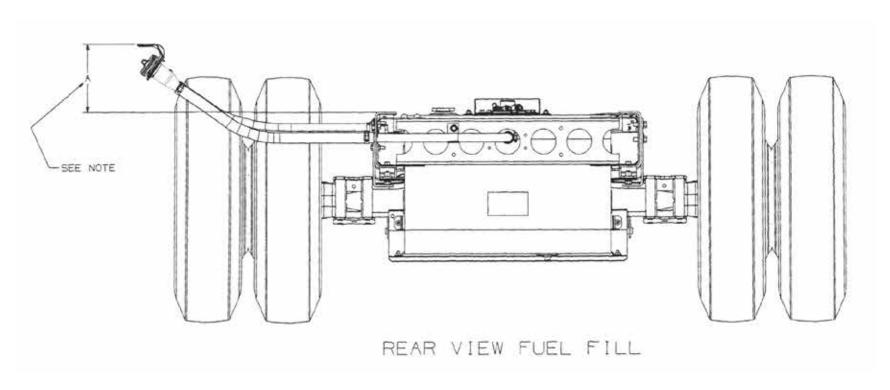
Installation Instructions

- 1. Disconnect battery.
- 2. Remove the short filler hose and the short breather hose from the breather and fuel filler pipes and the filler neck bracket assembly.
- 3. Filler kit hoses are designed for the 102 inch wide body width. Modify the hoses as required to fit dimension "E" of the desired body width
- 4. Install flexible filler hose (item 2) to fuel filler pipe and filler neck bracket assembly using existing screw clamps.
- 5. Install flexible breather hose (item 3) to fuel breather pipe and filler neck bracket assembly using new clamps (item 4)
- 6. The filler neck must be mounted to allow the filler neck bracket to be parallel to the frame horizontal.
- 7. Filler neck (Dimension A) must be between 6.85 inches and 8.85 inches above frame.
- 8. Secure the filler plate to the bottom of the body and check for leaks.
- 9. Ensure that fill hose does not sag, creating an area where the fuel could pool in the fill hose.
- 10. Reconnect battery.

Fuel Type

Use regular unleaded gasoline rated at 87 octane or higher that meets specification ASTMD4814 in the U.S. Blended gasoline is suitable for use in the Chevrolet LCF 3500, 4500 Gas Chassis.

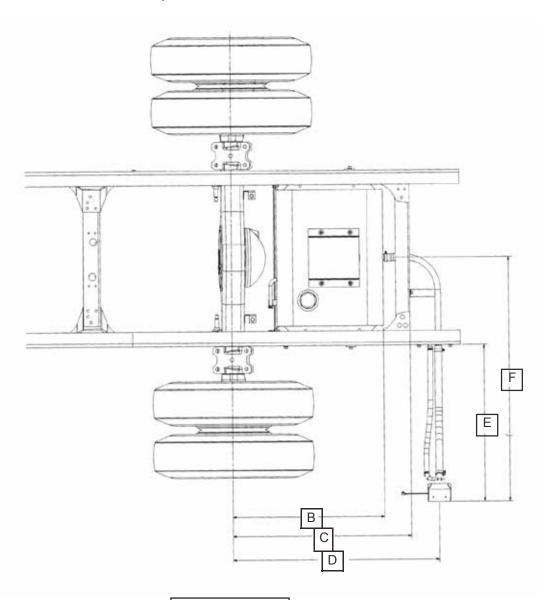
MTBE is "methyl tertiarybutylether." Fuel that is no more than 15%.


MTBE is fine for your vehicle.

Ethanol is ethyl or grain alcohol. Properly-blended fuel that is no more than 10% ethanol is fine for your vehicle.

NOTICE: Fuel that is 15% Ethanol is not suitable for your vehicle. Fuel that is than 85% Ethanol is not suitable for your vehicle. Methanol is methyl or wood alcohol.

NOTICE: Fuel that is more than 5% methanol is bad for your vehicle. And even at 5% or less, there must be "co-solvents" and corrosion preventives in this fuel to help avoid damage to the fuel system from methanol.


Rear View Fuel Fill

Dimension A = 6.85-8.85 inches (174-216 mm)

Figure 7.23.1

Top View Fuel Fill

Dimensions:

B = 29.75 inches (756 mm)

C = 34.00 inches (863 mm)

D = 39.29 inches (998 mm)

E = 33.86 inches (860 mm)

F = 50.6 inches (1285.2 mm)

Figure 7.24.1

Through the Rail Fuel Fill Frame Hole

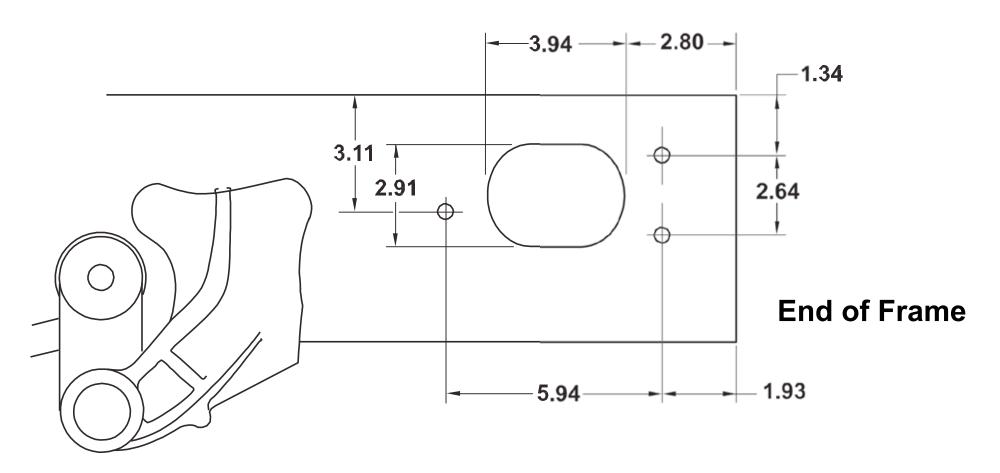


Figure 7.25.1

Fuel Fill Parts Illustration

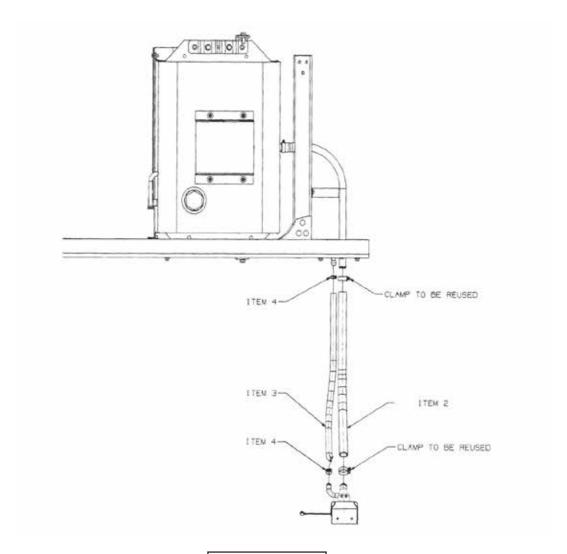


Figure 7.26.1

Fuel Fill Parts List

Number	Description	Part Number – GM	Quantity
1			
2	Hose, Fuel Filler	97378537	1
3	Hose, Breather	97378536	1
4	Clamp, Rubber Hose	15699825	2

Figure 7.27.1

3500, 4500 Crew Cab Gas Specifications

Model	3500 GAS	4500 GAS			
GVWR	12,000 lb 14,500 lbs.				
WB		n, 176 in.			
Engine	GMPT 8-cylinder, V Block 4-cycle, OHV,	water cooled, Sequential Port Fuel Injection			
Model/Displacement	GMPT-V8/36	5 CID (6.0 liters)			
HP(Gross)	297 HP	@ 4300 rpm			
Torque(Gross)	372 lb-ft torc	ue @ 4000 rpm			
Equipment	Sequential Port Fuel Injection (SFI), mass air flo	w meter, powertrain control module (PCM), onboard			
	diagnostics, oxygen sensors, catalytic convertor, map sensor, withey	ternal oil cooler, engine cruise control and High Idle Mode.			
Transmission	6L90 Hydra-Matic 6-speed automatic with lock-up co	nverter and overdrive. No PTO opening			
Steering	Integral power steering 18.8-20.9:1 ra	tio. Tilt and telescoping steering column.			
Front Axle	Reverse Elliot "I"-Be	eam rated at 6,380 lbs.			
Suspension	Semi-elliptical steel alloy tapered leaf spri	ngs with stabilizer bar and shock absorbers.			
GAWR	4,860 lbs.	6,630 lbs.			
Rear Axle	Full-floating single speed with hypoid gearing rated at 11,020 lb.				
Suspension	Semi-elliptical steel alloy multi-	leaf springs and shock absorbers.			
GAWR	8,840 lbs.	11,020 lbs.			
Wheels	16 x 6.0 6-hole disc wheels, p	ainted white. 19.5 x 6.0			
Tires	215/85R-16E (10 ply) LRR (Low Rolling Resistance)	215/85R-16E (10 ply) LRR (Low Rolling Resistance)			
	tubeless steel belted radial, all season, front and rear	tubeless steel belted radial, all season, front and rear			
	Dual circuit vacuum assisted hydraulic service brakes with I				
Brakes	proportioning of the brake system front disc and self-adjust of				
_	mechanical, cable actuated, internal expanding drum type, trans				
Fuel Tank	30 gal. rectangular steel fuel tank. Mounted between the fram				
<u> </u>	Through the rail				
Frame	Ladder type channel section straight frame rail 33.5 inches wide	e through the total length of the frame.			
<u> </u>	Yield strength 44,000 psi, section modulus 7.20 in ³ ., RBM 316,800.				
Cab	All-steel, low cab forward BBC 109.9 in. All-steel, low cab	forward7 passenger, BBC 109.9 in.			
	TRICOT cloth covered high back driver's seat with two-occupant passenger seat.				
Equipment	Four passenger rear bench seat. Dual cab mounted exterior				
	Tilt and telescoping steering column. Power windows and doc				
Electrical	12-volt, negative ground, dual maintenance free batteries, 750				
Options	see page 8.3 for o	ptions			

NOTE: These selected specifications are subject to change without notice.

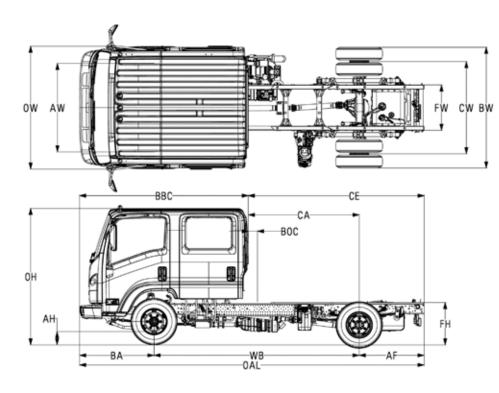


Figure 8.2.2

3500 Crew Cab Variable Chassis Dimensions Unit WB CA* CE* OAL AF Inch 150.0 88.5 131.6 241.5 43.1 Inch 176.0 114.5 157.6 267.5 43.1 *Effective CA & CE are CA or CE less BOC

3500 C	rew Cab I	Dimensi	on Constants
Code	Inches	Code	Inches
AH	7.5	BW	84.1
AW	65.6	CW	65.0
BA	48.4	FW	33.5
BBC	109.9	ОН	90.0
BOC	5.0	OW	81.3
FH	31.8		

3500 Crew Cab In-Frame Tank

Chassis Cab and Maximum Payload Weights							
Model	WB	RPO	Unit	Front	Rear	Total	Payload
P13043	150	FWH	Lbs.	3781	1911	5692	6308
P14043	176	FNW	Lbs.	3838	1916	5754	6246

4500 C	Crew Cab	Variable	Chassi	s Dime	nsions
Unit	WB	CA*	CE*	OAL	AF
Inch	150.0	88.5	131.6	241.5	43.1
Inch	176.0	114.5	157.6	267.5	43.1
*Effect	ive CA & CE	are CA c	or CE les	s BOC	

4500 C Code	rew Cab Inches	Dimensi Code	on Constants Inches
AH	8.3	BW	84.1
AW	65.6	CW	65.0
BA	48.4	FW	33.5
BBC	109.9	ОН	91.1
BOC	5.0	OW	81.3
FH	33.0		

	4500 Crew Cab In-Frame Tank 14,500-lb. GVWR Automatic Transmission Model							
		s Cab ar						
Model	WB	RPO	Unit	Front	Rear	Total	Payload	
P33043	150	FWH	Lbs.	3909	2088	5997	8503	
P34043	176	FNW	l hs	3966	2092	6058	8442	

Vehicle Weight Limits:

3500 4500

GVRW Designed Maximum 12,000 lbs. 14,500 lbs.

GAWR, Front 4,860 lbs. 6,630 lbs.

GAWR, Rear 8,840 lbs. 11,020 lbs.

Technical Notes:

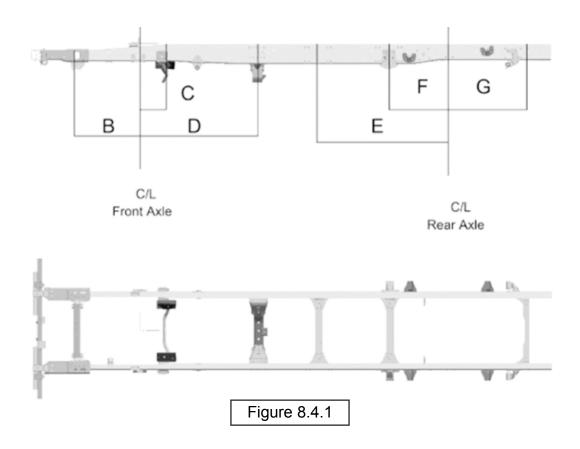
Chassis Curb Weight includes standard equipment and fuel. Does not include driver, passenger, payload, body or special equipment.

Maximum Payload Weight is the allowed maximum for equipment, body, payload, driver and passengers and is calculated by subtracting chassis curb weight from the GVWR.

	Weights for Options							
	3500 Gas							
RPO	Option Description	Front / Rear						
(1)	·	Lbs.						
9C2	65 mph top speed limit (max cruise speed 60mph)	0/0						
KO5	Block Heater (cord)	1/0						
UIZ	Z AM/FM/CD Radio with Ax input/USB port and Bluetooth 0 / 0							
DB6	Heated dual remote control mirrors (15" head) 3/0							
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer							
KPK	Engine Oil Pan Heater (120v 300w)	2/0						
DB8	Heated Mirrors	1/0						
TBD	Mirror Bracket for 102" wide body	1/0						
9W8	Seat covers crew cab	9/2						
IX2	Rear Body Dome Lamp Switch (6)	1/0						
UL5	Delete Standard AM/FM/CD Radio	3/0						
UZF	Back up alarm	0/2						
V22	Chrome Grille	1/0						

(1) RPO is Regular Production Option that is stocked in Port inventory.

(2) LSD factory installed Limited Slip Differential


	Weights for Options				
		4500 Gas			
RPO	Option Description	Front / Rear			
(1)		Lbs.			
9C2	65 mph top speed limit (max cruise speed 60mph)	0/0			
KO5	Block Heater (cord)	1/0			
UIZ	AM/FM/CD Radio with Ax input/USB port and Bluetooth	0/0			
DB6	Heated dual remote control mirrors (15" head)	3/0			
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer	19 / 0			
KPK	Engine Oil Pan Heater (120v 300w)	2/0			
DB8	Heated Mirrors	1/0			
TBD	Mirror Bracket for 102" wide body	1/0			
9W8	Seat covers crew cab	9/2			
IX2	Rear Body Dome Lamp Switch (6)	1/0			
UL5	Delete Standard AM/FM/CD Radio	3/0			
UZF	Back up alarm	0/2			
V22	Chrome Grille	1/0			

(1) RPO is Regular Production Option that is stocked in Port inventory.

(2) LSD factory installed Limited Slip Differential

8.4

Frame and Crossmember Specifications

Wheelbase	Frame	Crossmember Type/Location					
	Thick	В	C-A/T	D-A/T	E	F	G
150.0	0.24	28.3	7.9	AA 51.5	BB 57.9	CC 24.2	DD 33.8
176.0	0.24	28.3	7.9	AA 51.5	BB 74.4	CC 24.2	DD 33.8

A/T = Automatic Transmission

Figure 8.4.2

8.5

Frame Chart

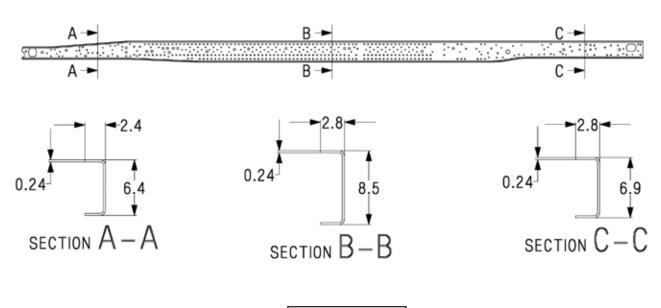
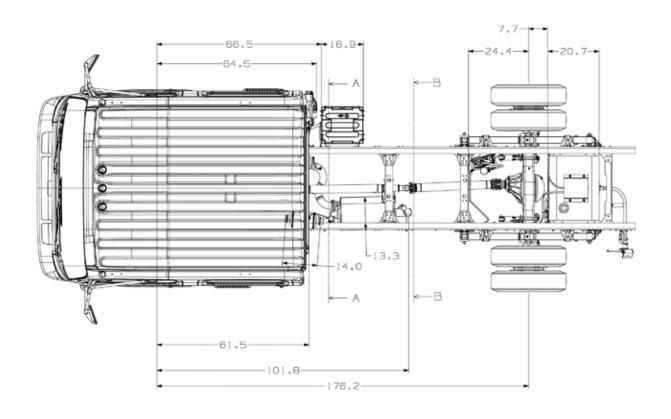


Figure 8.5.1

Wheelbase	Frame FL	Frame Thickness
150.0	223.8	0.24
176.0	249.8	0.24

Figure 8.5.2

Auxiliary Views 176"



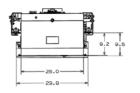
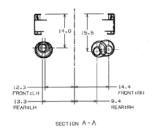
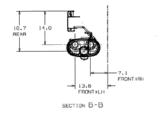




Figure 8.6.1

Chassis Dimensions

Dimensions				
Α	В	С	D	
WB	CA	CE	OAL	
150.0	88.5	131.6	241.5	
176.0	114.5	157.6	267.5	

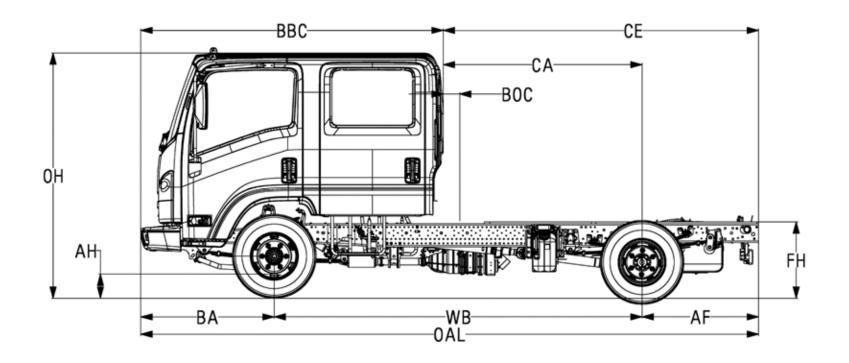


Figure 8.7.1

Chassis Dimensions

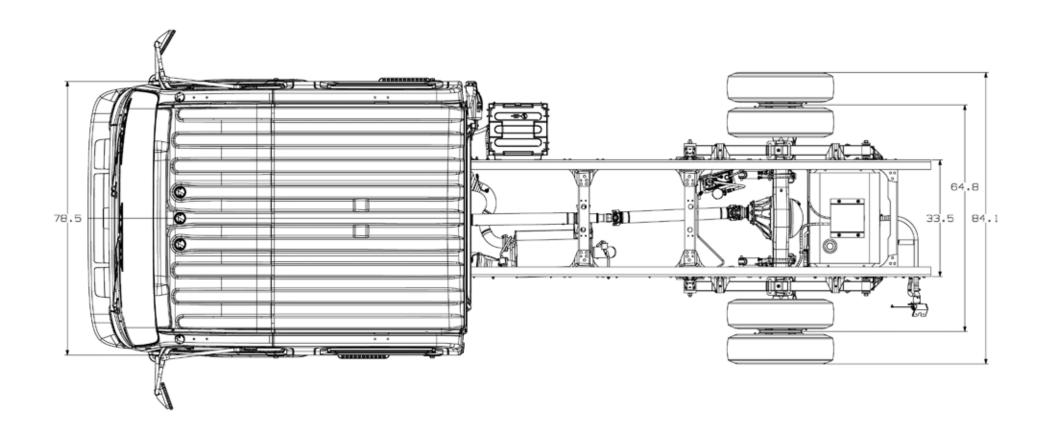
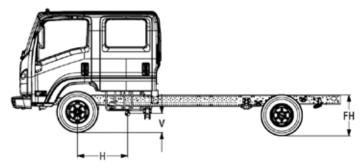


Figure 8.8.1


8.9

Center of Gravity

3500 GAS CREW CAB

GVWR	WB	V	H Auto. Trans. IN FRAME TANK
12,000	150	25.9	50.9
	176	28.8	58.7

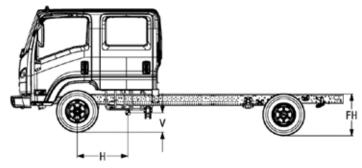
Figure 8.9.1

V = Vertical Center of GravityH = Horizontal Center of Gravity

The maximum vertical center of gravity must not be exceeded at maximum GVWR and rated front and rear GAWR. The center of gravity maximum is 63" (1600mm) above the ground. The horizontal center of gravity must be located between the front and rear axles.

NOTE: The maximum dimensions for a body installed on the LCF Gas are 102 inches wide (outside) with 102" wide mirror brackets installed and 91 inches high (inside). Any larger body applications must be approved by GM Upfitter Engineering. Contact us on www.gmupfitter.com.

Figure 8.9.2


8.10

Center of Gravity

4500 GAS CREW CAB

GVWR	WB	V	H Auto. Trans. IN FRAME TANK		
44.500	150	26.9	53.4		
14,500	176	26.9	61.8		

Figure 8.10.1

V = Vertical Center of GravityH = Horizontal Center of Gravity

The maximum vertical center of gravity must not be exceeded at maximum GVWR and rated front and rear GAWR. The center of gravity maximum is 63" (1600mm) above the ground. The horizontal center of gravity must be located between the front and rear axles.

NOTE: The maximum dimensions for a body installed on the LCF Gas are 102 inches wide (outside) with 102" wide mirror brackets installed and 91 inches high (inside). Any larger body applications must be approved by GM Upfitter Engineering. Contact us on www.gmupfitter.com.

Figure 8.10.2

Front Axle Chart 3500

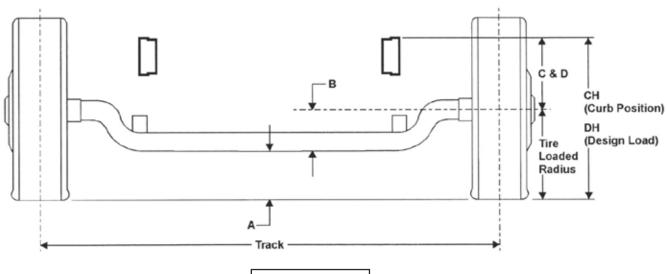


Figure 8.11.1

Formulas for calculating height dimensions:

A = Tire Loaded Radius - B

C = Centerline of Axle to Top of Frame Rail at Curb Position
D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	Α	В	С	D	CH	DH	Track	Tire Radius	
										Unload	Load
215/85R 16-E	12,000 lbs.	4,860 lbs.	7.5	6.6	12.9	12.2	27.5	26.3	65.5	14.6	14.1

Figure 8.11.2

Front Axle Chart 4500

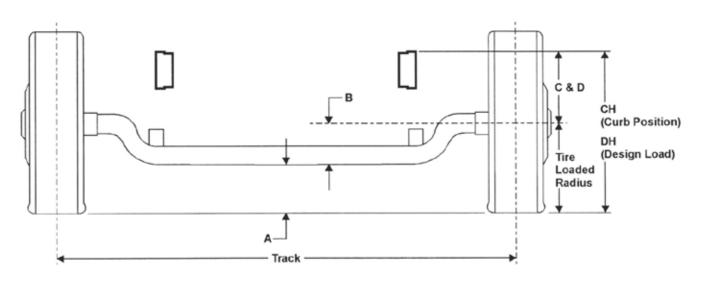
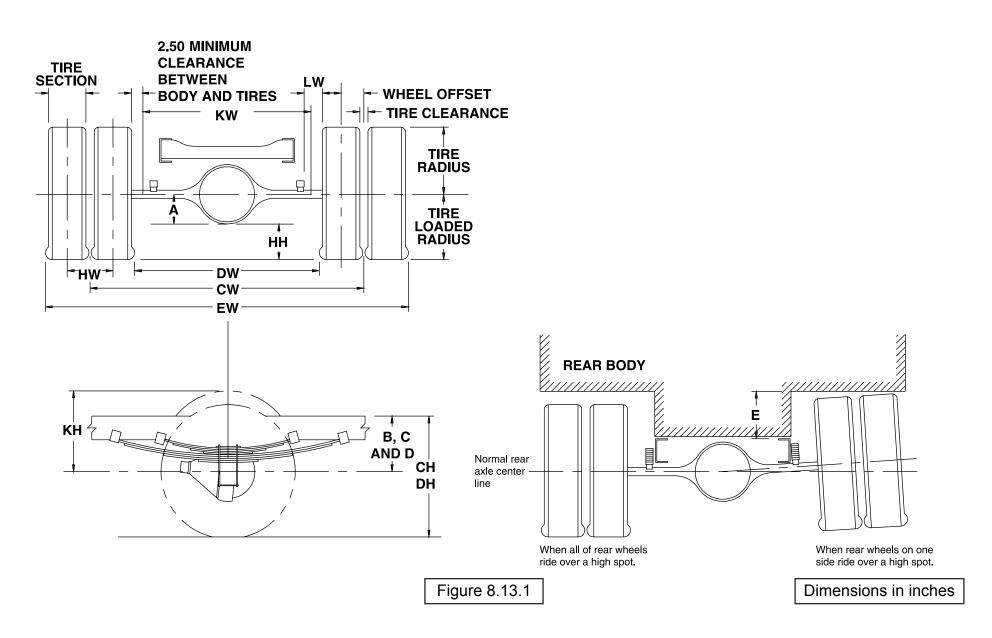


Figure 8.12.1

Formulas for calculating height dimensions:

A = Tire Loaded Radius - B


C = Centerline of Axle to Top of Frame Rail at Curb Position
D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	Α	В	С	D	СН	DH	Track	Tire Radius	
										Unload	Load
225/70R 19.5	14,500 lbs.	6,630 lbs.	8.3	6.6	13.0	11.5	29.0	26.4	65.5	16.0	14.93

Figure 8.12.2

Rear Axle Chart 3500

		De	finitions
		D	Rear Frame Height:
A	Centerline of axle to bottom of axle bowl.	DH	
В	Centerline of axle to top of frame rail at metal-to-metal position.	DW	through the centerline of the rear axle at design load. Minimum distance between the inner surfaces of the rear tires.
C	· · · · · · · · · · · · · · · · · · ·		Maximum Rear Width:
			Overall width of the vehicle measured at the outermost surface of the rear tires.
	Centerline of axle to top of frame rail at design load.		Rear Tire Clearance:
		НН	Minimum clearance between the rear axle and the ground-line.
	Rear Tire Clearance:		Dual Tire Spacing:
	Minimum clearance required for tires and chain measured from the		Distance between the centerlines of the minimum distance required for tire bounce
E	top of the frame at the vehicle centerline of the rear axle, when rear	HW	as measured from the centerline of the rear axle and the top of the rear tire when
	wheels on one side ride over a high spot.		one wheel rides over a high spot.
	Rear Frame Height:		Track Dual Rear Wheel Vehicle:
CI	H Vertical distance between the normal top of frame rail and the	CW	Distance between the centerlines of the dual wheels measured at the ground-line.
	ground-line through the centerline of the rear axle at curb		
	position.		
	Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance		See Chart for values.

Figure 8.14.1

	Formulas for Calculati	ng R	ear Width and Height Dimensions
CW	= Track	НН	= Tire loaded radius – A
СН	= Tire loaded radius + C	JH	= KH – B
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches
DW	= Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches
EW	= Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs

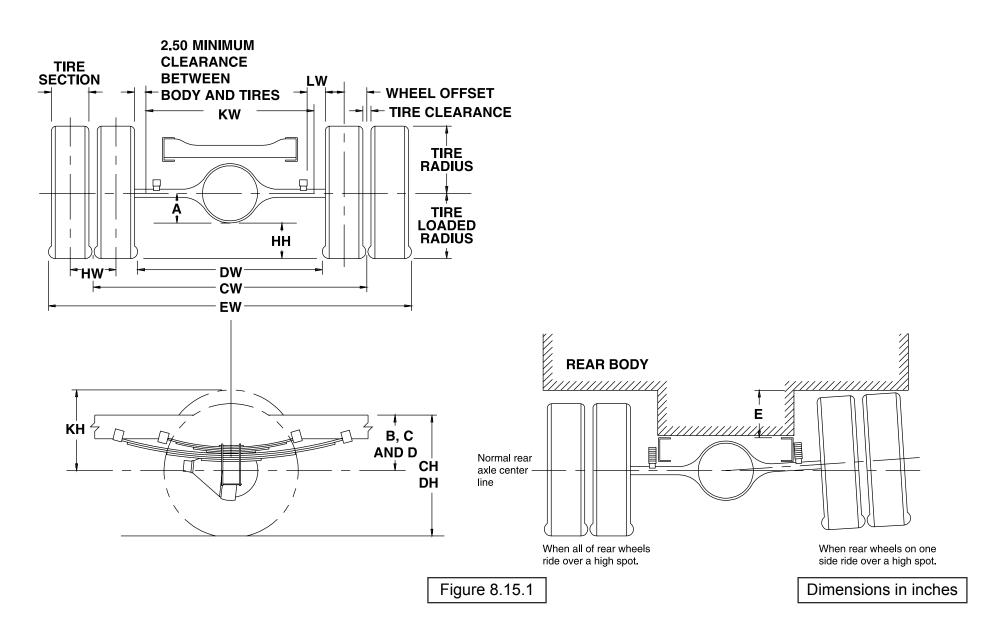

NOTE: Track and overall width may vary with optional equipment.

Figure 8.14.2

Tire	GAWR	Track CW	Α	В	С	D	E
215/85R 16-E	8,840 lbs.	65.0	6.5	9.3	15.4	13.0	7.8

Figure 8.14.3

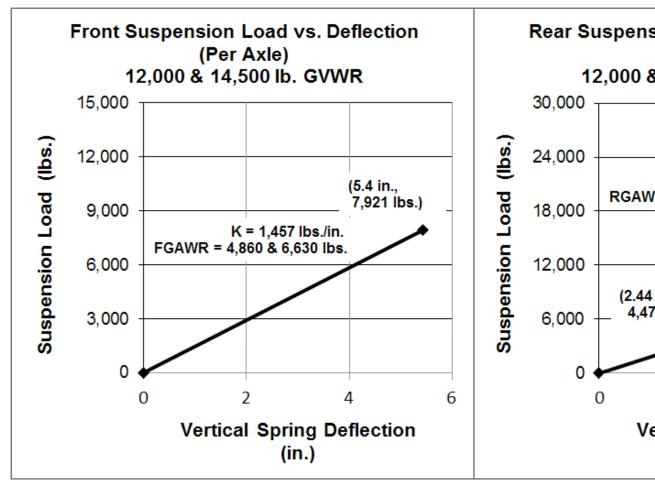
Rear Axle Chart 4500

		Def	initions
			Rear Frame Height:
Α	Centerline of axle to bottom of axle bowl.	DH	Vertical distance between the normal top of frame rail and the ground-line
			through the centerline of the rear axle at design load.
В	Centerline of axle to top of frame rail at metal-to-metal position.	DW	Minimum distance between the inner surfaces of the rear tires.
С	Centerline of axle to top of frame rail at curb position.	EW	Maximum Rear Width:
			Overall width of the vehicle measured at the outermost surface of the rear tires.
D	Centerline of axle to top of frame rail at design load.		Rear Tire Clearance:
		НН	Minimum clearance between the rear axle and the ground-line.
	Rear Tire Clearance:		Dual Tire Spacing:
	Minimum clearance required for tires and chain measured from the		Distance between the centerlines of the minimum distance required for tire bounce
E	top of the frame at the vehicle centerline of the rear axle, when rear	HW	as measured from the centerline of the rear axle and the top of the rear tire when
	wheels on one side ride over a high spot.		one wheel rides over a high spot.
	Rear Frame Height:		Track Dual Rear Wheel Vehicle:
CH	H Vertical distance between the normal top of frame rail and the	CW	Distance between the centerlines of the dual wheels measured at the ground-line.
	ground-line through the centerline of the rear axle at curb		
	position.		
	Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance		See Chart for values.

Figure 8.16.1

	Formulas for Calculation	ng R	ear Width and Height Dimensions
CW	= Track	НН	= Tire loaded radius – A
СН	= Tire loaded radius + C	JH	= KH – B
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches
DW	= Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches
EW	= Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs

NOTE: Track and overall width may vary with optional equipment.


Figure 8.16.2

Tire	GAWR	Track CW	Α	В	С	D	E
225/70R 19.5 G	11,020 lbs.	65.0	7.7	9.3	15.6	13.4	8.4

Figure 8.16.3

Dimensions in inches

Suspension Deflection Charts – 3500, 4500

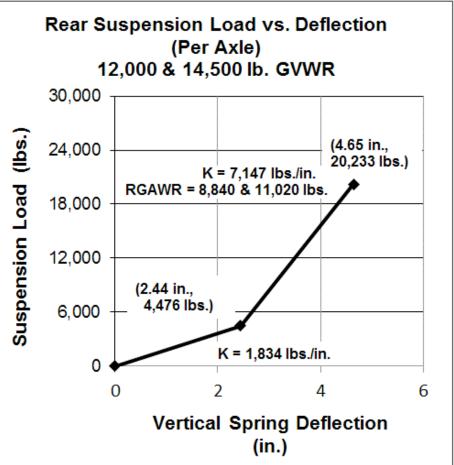


Figure 8.17.1

8.18

Tire and Disc Wheel Chart – 3500

Tire

	Tire L	oad Limit and Co	ld Inflation Press	Maximum Tire			
Tire Size	Sir	igle	Du	ıal	Front	Rear	GVWR(Lb.)
	Lb.	PSI	Lb.	PSI	2 Single	4 Dual	
215/85R 16E	2,430	70	2,210	70	4,860	8,840	12,000

Figure 8.18.1

	GVWR (Lb.)		Tire R	adius				
Tire Size		Loaded		Unloaded		Tire Section	Tire Clearance	Design Rim
		Front	Rear	Front	Rear	Width		Width
215/85R 16E	12,000	14.05	14.05	14.6	14.6	8.54	1.46	6.0

Disc Wheel

Figure 8.18.2

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
16.6 x 6 K	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	325 ft-lb. (440 N•m)	6.46	5.0	0.35	5º DC	Steel TOPY

*O.D. Wrench Sizes

Figure 8.18.3

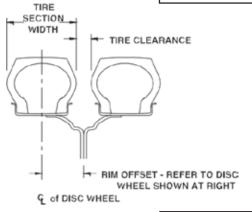
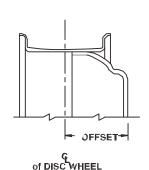



Figure 8.18.4

8.19

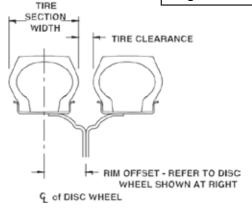
Tire and Disc Wheel Chart – 4500

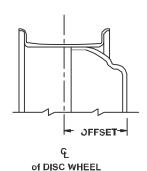
Tire

	Tire Load Limit and Cold Inflation Pressures				Maximum Tire		
Tire Size	Single		Dual		Front	Rear	GVWR(Lb.)
	Lb.	PSI	Lb.	PSI	2 Single	4 Dual	
225/70R 19.5 G	3,315	85	3,115	85	6,630	12,460	14,500

Figure 8.19.1

		Tire Radius						
Tire Size	GVWR (Lb.)	Loa	ded	Unlo	aded	Tire Section	Tire Clearance	Design Rim
		Front	Rear	Front	Rear	Width		Width
225/70R 19.5 G	14,500	15.24	15.28	16.10	15.10	8.9	1.1	6.0


Disc Wheel


Figure 8.19.2

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
19.5 x 6.00	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	325 ft-lb. (440 N•m)	6.46	5.0	0.37	15º DC	Steel TOPY

*O.D. Wrench Sizes

Figure 8.19.3

Dimensions in inches

Figure 8.19.4

Revision: 11/30/2017

8.20 B

3500, 4500 Crew Cab Propeller Shaft

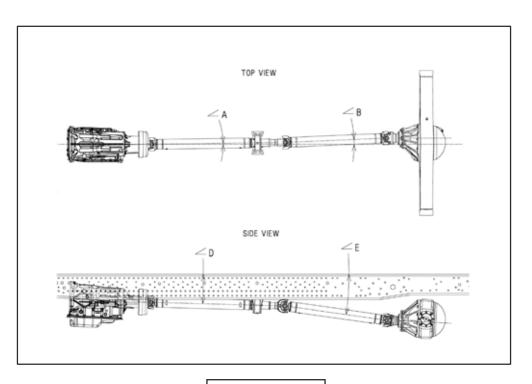


Figure 8.20.1

Wheelbase	Top View		Side View				
(in.)	∠A	∠B	∠D	∠E	Trans	Rear Axle	
150	0.8°	2.5°	1.5°	8.0°	2.5°	2.5°	
176	0.6°	1.7°	2.0°	4.5°	2.5°	2.5°	

NOTE: 1. Angles provided in table are relative to the frame angle. Please take this into consideration for service measurements.

2. Driveline angles are based on the chassis curb weight which includes standard equipments, fuel but no driver, body, or payload.

3500, 4500 Crew Cab Propeller Shaft

Wheelbase	150	176
No. of Shafts	2	2
Trans. Type	A/T	A/T
Shaft #1 O.D. (Inches)	3.25	3.25
Thickness (Inches)	0.0906	0.0906
L (Inches)	35.47	46.1
Type	В	В
Shaft #2 O.D. (Inches)	3.25	3.25
Thickness (Inches)	0.0906	0.0906
L (Inches)	34.17	49.52
Туре	С	С

Figure 8.21.1

Type	Description	Illustration
Туре В	1st shaft in 2-piece driveline	
Туре С	2nd shaft in 2-piece driveline	

Figure 8.21.2

Brake System Diagram 12,000 GVW

Vacuum Over Hydraulic

Please refer to introduction section of book for antilock system cautions and wheelbase modification requirements.

Legend for 3500, 3500HD, 4500, 4500HD, 4500XD Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Vacuum Pump
- (4) Check Valve
- (5) Exhaust Brake Valve
- (6) Magnetic Valve
- (7) Check Valve (One-way Valve)
- (8) Vacuum Tank
- (9) 4-Way Connector
- (10) With Metering Valve
- (11) W/O Metering Valve
- (12) Brake Fluid Reservoir
- (13) Electric Vacuum Pump
- (14) Master Cylinder
- (15) Vacuum Booster (Servo Unit)
- (16) Front Wheel Cylinder

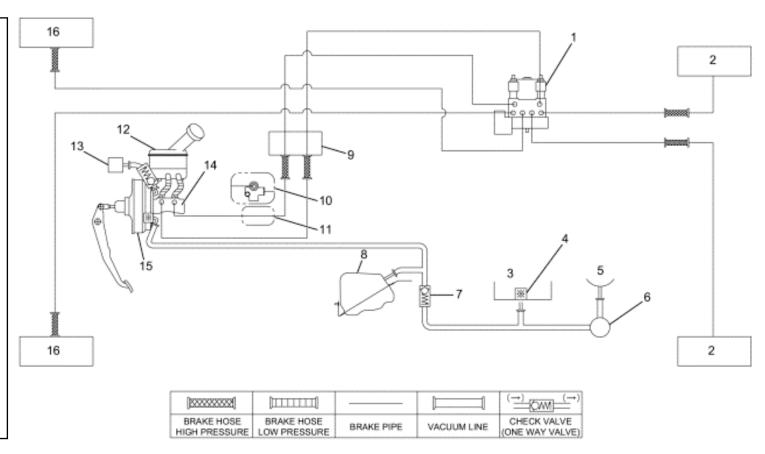


Figure 8.22.1

Brake System Diagram 14,500 GVW

Vacuum Over Hydraulic

Please refer to introduction section of book for antilock system cautions and wheelbase modification requirements.

Legend for 3500, 3500HD, 4500, 4500HD, 4500XD Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Vacuum Pump
- (4) Check Valve
- (5) Exhaust Brake Valve
- (6) Magnetic Valve
- (7) Check Valve (One-way Valve)
- (8) Vacuum Tank
- (9) 4-Way Connector
- (10) With Metering Valve
- (11) W/O Metering Valve
- (12) Brake Fluid Reservoir
- (13) Electric Vacuum Pump
- (14) Master Cylinder
- (15) Vacuum Booster (Servo Unit)
- (16) Front Wheel Cylinder

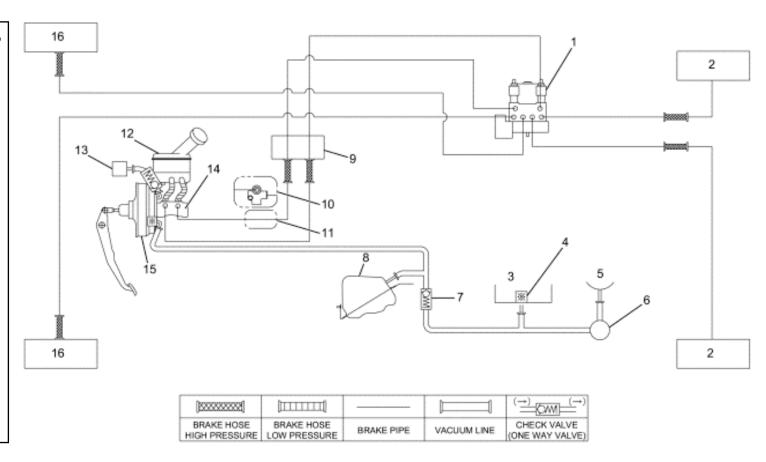


Figure 8.23.1

8.24

High Idle Mode

The high idle mode is the function that raises engine speed by operation of the driver when the vehicle is stationary. PIM performs the high idle mode control when the condition for operating is met. The PIM outputs the idle up command to the ECM and will blink the cruise control set indicator lamp during the high idle mode control.

Condition for Operating the High Idle Mode Control

The following conditions are met longer than 3 seconds:

- Engine is running.
- The selector lever is in "P" (Park) or "N" (Neutral) position.
- The accelerator pedal position is less than 25 percent.
- · The brake switch is OFF.
- The cruise control main switch is ON.
- The cruise control set switch is ON.

Condition for Cancelling the High Idle Mode Control

Each of following conditions is met:

- Engine is stopped.
- The selector lever is in other than "P" (Park) or "N" (Neutral) position.
- The accelerator pedal position is 25 percent or more.
- The brake switch is ON.
- · The cruise control main switch is OFF.
- The cruise control set switch is OFF.

Through the Rail Fuel Fill

Installation Instructions

- 1. Disconnect battery.
- 2. Remove the short filler hose and the short breather hose from the breather and fuel filler pipes and the filler neck bracket assembly.
- 3. Filler kit hoses are designed for the 102 inch wide body width. Modify the hoses as required to fit dimension "E" of the desired body width.
- 4. Install flexible filler hose (item 2) to fuel filler pipe and filler neck bracket assembly using existing screw clamps.
- 5. Install flexible breather hose (item 3) to fuel breather pipe and filler neck bracket assembly using new clamps (item 4)
- 6. The filler neck must be mounted to allow the filler neck bracket to be parallel to the frame horizontal.
- 7. Filler neck (Dimension A) must be between 6.85 inches and 8.85 inches above frame.
- 8. Secure the filler plate to the bottom of the body and check for leaks.
- 9. Ensure that fill hose does not sag, creating an area where the fuel could pool in the fill hose.
- 10. Reconnect battery.

Fuel Type

Use regular unleaded gasoline rated at 87 octane or higher that meets specification ASTMD4814 in the U.S. Blended gasoline is suitable for use in the Chevrolet LCF 3500, 4500 Gas Chassis.

MTBE is "methyl tertiarybutylether." Fuel that is no more than 15%.

MTBE is fine for your vehicle.

Ethanol is ethyl or grain alcohol. Properly-blended fuel that is no more than 10% ethanol is fine for your vehicle.

NOTICE: Fuel that is 15% Ethanol is not suitable for your vehicle. Fuel that is than 85% Ethanol is not suitable for your vehicle. Methanol is methyl or wood alcohol.

NOTICE: Fuel that is more than 5% methanol is bad for your vehicle. And even at 5% or less, there must be "co-solvents" and corrosion preventives in this fuel to help avoid damage to the fuel system from methanol.

Rear View Fuel Fill

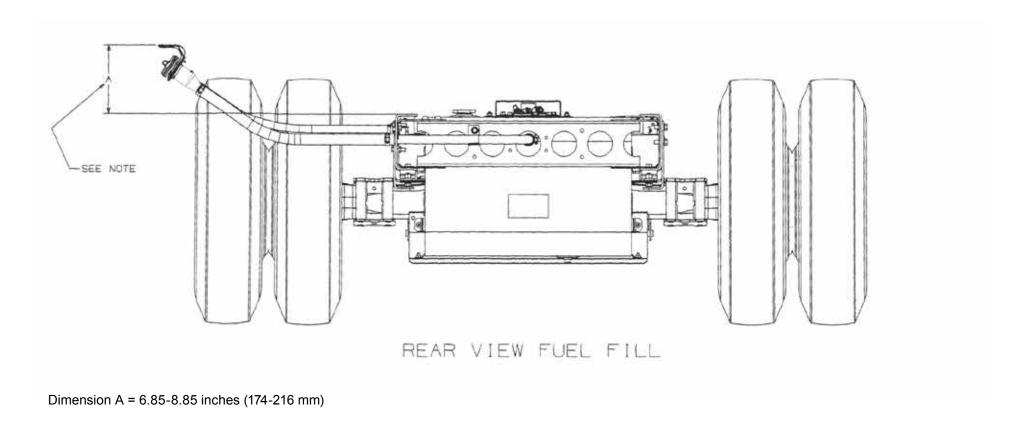
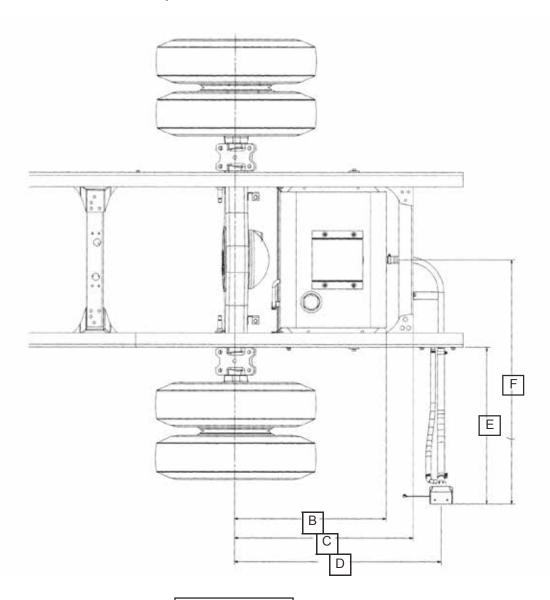



Figure 8.26.1

Top View Fuel Fill

Dimensions:

B = 29.75 inches (756 mm)

C = 34.00 inches (863 mm)

D = 39.29 inches (998 mm)

E = 33.86 inches (860 mm)

F = 59.60 inches (1,514 mm)

Figure 8.27.1

Through the Rail Fuel Fill Frame Hole

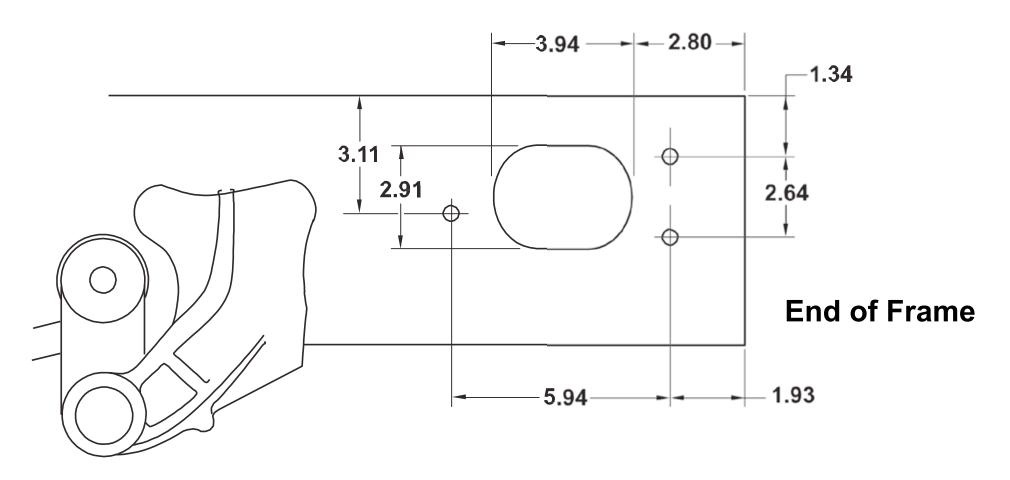
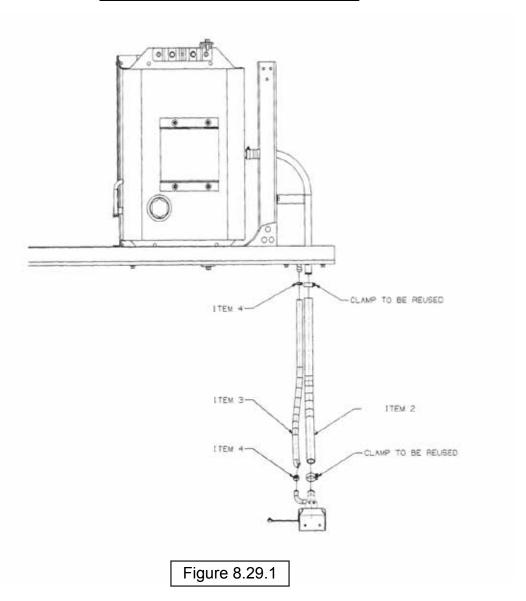



Figure 8.28.1

Fuel Fill Parts Illustration

8.30

Fuel Fill Parts List

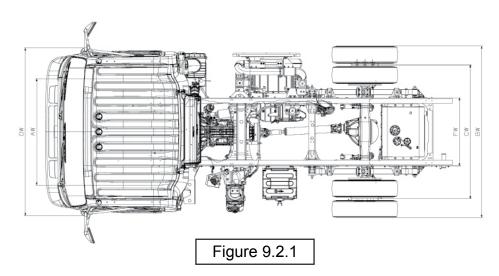

Number	Description	Part Number – GM	Quantity
		PARTS	
2	Hose, Fuel Filler	97378537	1
3	Hose, Breather	97378536	1
4	Clamp, Rubber Hose	15699825	2

Figure 8.30.1

3500HD Diesel Specifications

MODEL	3500HD Diesel
GVWR	13,000 lbs.
WB	109 in, 132.5 in, 150 in. 176 in.
ENGINE	Isuzu 4-cylinder, in-line 4-cycle, turbocharged, intercooled, direct injection diesel.
Model/Displacement	4JJ1-TC/183 CID (3.0 liters)
HP (Gross)	150 HP @ 2800 RPM w/ Automatic Transmission
Torque(Gross)	282 lb./ft. torque @ 1600-2800 RPM
Equipment	Dry element air cleaner with vertical intake; 431 square inch radiator; 10 blade 17.7 inch diameter fan with viscous drive. Cold weather starting device and an
	oil cooler. Engine oil level check switch and light. Engine warning system with audible warning for low oil pressure, and high coolant temperature, and engine
	horsepower derate protection system based on coolant temperature. Engine cruise control function.
TRANSMISSION	Aisin A460 6 speed automatic transmission with fifth and sixth gear overdrive with lock up in 2nd, 3rd, 4th, 5th and 6th.
	PTO capability with automatic torque converter lockup in stationary PTO mode.
STEERING	Integral power steering 18.8-20.9:1 ratio. Tilt and telescoping steering column.
FRONT AXLE	Reverse Elliot I" -Beam rated at 6,830 lbs.
Suspension	Semi-elliptical steel alloy tapered leaf springs with stabilizer bar and shock absorbers.
GAWR	5,360 lbs.
REARAXLE	Full floating single speed with hypoid gearing rated at 11,020 lbs.
Suspension	Semi-elliptical steel alloy multi-leaf springs and shock absorbers.
GAWR	9,880 lbs.
WHEELS	16x6.0-K 6 hole disc wheels, painted white.
TIRES	215/85R-16E (10 pr) LRR (Low Rolling Resistance) tubeless steel belted radials, all season front and rear.
BRAKES	Dual circuit vacuum assisted hydraulic service brakes with EBD
	(Electronic Brake Distribution) system for load proportioning of the brake system front disc and self-ad just outboard mounted
	drum rear. The parking brake is a mechanical, cable actuated, internal expanding drum type, transmission mounted. The exhaust brake is standard and is
	vacuum operated. 4 channel anti-lock brake system.
FUEL TANK	30 gal. rectangular steel fuel tank mounted in frame rail behind rear axle. Fuel water separator with indicator light on instrument cluster.
FRAME	Ladder type channel section straight frame rail 33.5 in wide
	through the total length of the frame. Yield strength 44,000 psi, section modulus 7.20 in3. RBM 316,800.
CAB	All steel low cab forward, BBC 70.7 in, 45° mechanical tilt with torsion assist.
Equipment	TRICOT breathable cloth covered high back driver's seat with two occupant passenger seat. Dual cab mounted exterior mirrors with integral convex
	mirror, AM/FM CD stereo radio. Tilt and telescoping steering column. Power windows and door locks, floor mats, tinted glass.
ELECTRICAL	12 Volt, negative ground, dual maintenance free batteries, 750 CCA each, 140 Amp alternator with integral regulator.
OPTIONS	See following page for options.
	NOTE: These selected specifications are subject to change without notice.

Vehicle Weights, Dimensions and Ratings

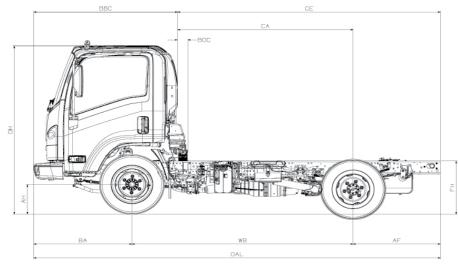


Figure 9.2.2

Dimension Constants:

Inches	Code	Inches
7.5	BW	83.3
65.6	CW	65.0
48.3	FW	33.5
70.7	ОН	90.8
6.1	OW	81.3
31.1		
	7.5 65.6 48.3 70.7 6.1	7.5 BW 65.6 CW 48.3 FW 70.7 OH 6.1 OW

Variable Chassis Dimensions:

Unit	WB	CA*	CE*	OAL	AF
Inch	109.0	86.5	129.6	200.5	43.1
Inch	132.5	110.0	153.1	224.0	43.1
Inch	150.0	127.5	170.6	241.5	43.1
Inch	176.0	153.5	196.6	267.5	43.1
*Effec	tive CA	& CF ar	e CA or	CF less	BOO

In-Frame Tank

13,000 lb. GVWR Automatic Transmission Model Chassis Curb and Maximum Payload Weights

Model	WB	RPO	Unit	Front	Rear	Total	Payload
T21003	109.0 in	EB4	lb.	3516	1877	5393	7607
T22003	132.5 in	FNJ	lb.	3603	1870	5473	7527
T23003	150.0 in	FWH	lb.	3621	1888	5509	7491
T24003	176.0 in	FNW	lb.	3646	1919	5565	7435

Vehicle Weight Limits:

GVWR Designed Maximum 13,000 lbs.
GAWR, Front 5,360 lbs.
GAWR, Rear 9,880 lbs.
Max Curb Weight 12,051 lbs.

Technical Notes:

Chassis Curb Weight reflects standard equipment and fuel but no driver or payload.

Maximum Payload Weight is the allowed maximum for equipment, body, payload and driver and is calculated by subtracting chassis curb weight from the GVWR.

Weights for Options						
RPO (1)	Option Description	Front / Rear Lbs.				
9D2	Speed Limited to 58 MPH	0/0				
9C2	Speed Limited to 65 MPH	0/0				
9E2	Speed Limited to 68 MPH	0/0				
AT9	Keyless entry	3/0				
9B9	Speed Limited to 70 MPH	0/0				
AIG	Suspension seat	18 / 0				
KPG	Locking DEF tank cap	0/0				
VIZ	AM/FM/CD Radio with Ax input/USB port and Bluetooth	0/0				
I9A	Engine Idle Shutdown (Timer set at 5 minutes for engine shutdown)	0/0				
DB9	Heated dual remote control mirrors (15" head)	3 / 0				
GTM	Air Deflector roof mounted (not available in Crew Cab)	64 / 0				
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer	19 / 0				
KPR	Engine Oil Pan Heater (120v 300w)	2/0				
NLX	33 Gallon Additional Diesel Fuel Tank mounted on LH side 150, 176 wb, std. cab	(7)				
PTO	PTO Enable Switch and Engine Idle Up Switch recommended for PTO and Idle applications only (2)	1/0				
DB8	Heated Mirrors	1/0				
TBD	Mirror Bracket for 102" wide body	1/0				
9WB	Seat Covers Standard Cab (9)	6/0				
IX2	Rear Body Dome Lamp Switch (6)	1/0				
UL5	Delete Standard AM/FM/CD Radio	3/0				
KQJ	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0				
UZF	Back up alarm	0 / 2				
V22	Chrome Grille	1/0				

Frame and Crossmember Specifications

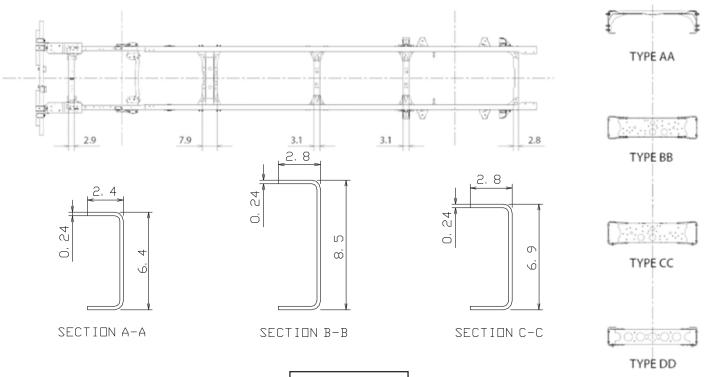


Figure 9.4.1

Wheelbase	Frame	Crossmember Type/Location									
	Thickness	В	С)		E		F		3
109	0.24	28.3	8.2	AA	44.3		-	CC	24.2	DD	33.8
132.5	0.24	28.3	8.2	AA	44.3	BB	57.5	CC	24.2	DD	33.8
150	0.24	28.3	8.2	AA	44.3	BB	57.9	CC	24.2	DD	33.8
176	0.24	28.3	8.2	AA	44.3	BB	74.4	CC	24.2	DD	33.8

Figure 9.4.2

9.5

Frame Chart

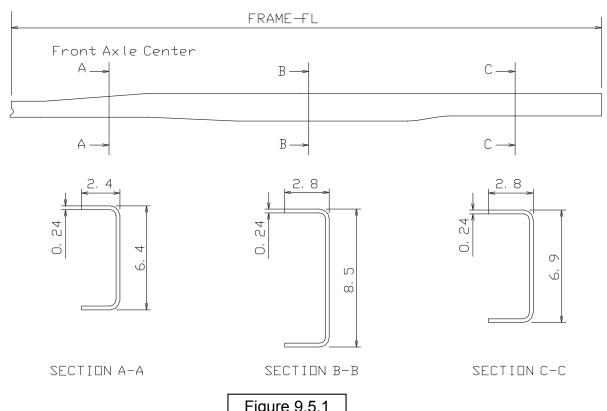


Figure 9.5.1

Wheelbase	Frame FL	Frame Thickness
109.0	182.5	0.24
132.5	206.1	0.24
150.0	223.8	0.24
176.0	249.8	0.24

Figure 9.5.2

3500HD Diesel Standard Cab - Top View

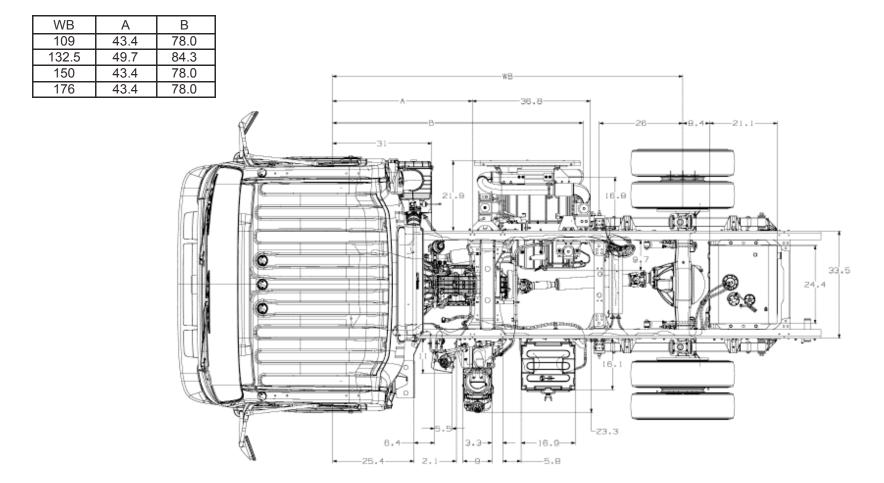


Figure 9.6.1

3500HD Diesel Standard Cab - Left Side View

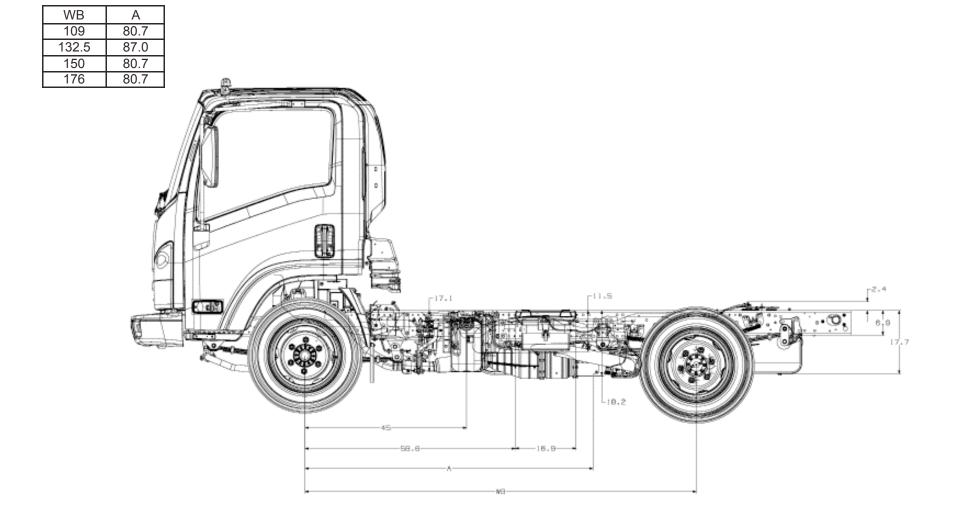


Figure 9.7.1

3500HD Diesel Standard Cab - Right Side View

WB	Α	
109	44.0	
132.5	50.3	
150	44.0	
176	44.0	

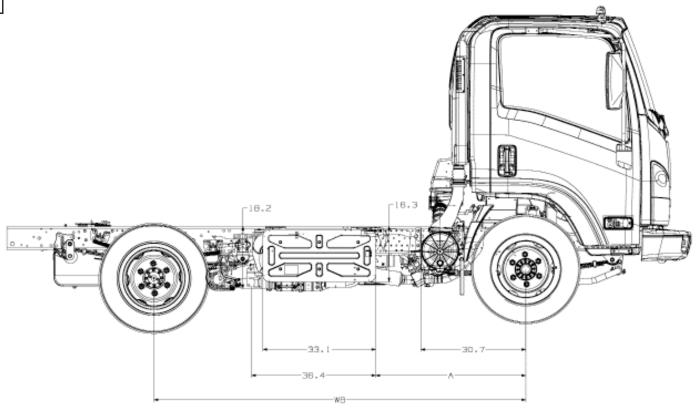
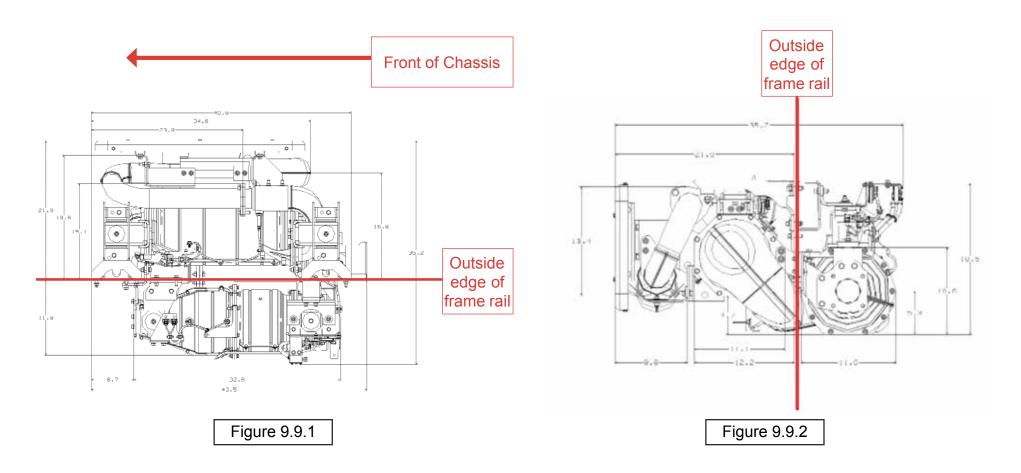



Figure 9.8.1

SCR / DPF 4JJ1-TC

9.10

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 150 Wheelbase

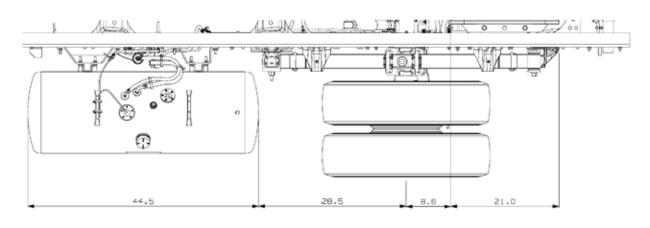


Figure 9.10.1

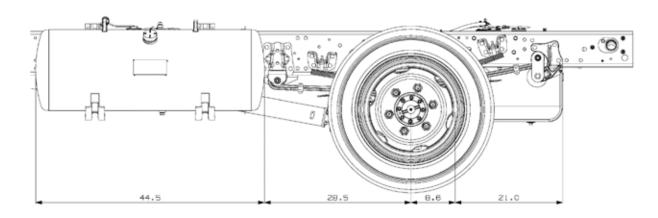


Figure 9.10.2

9.11

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase

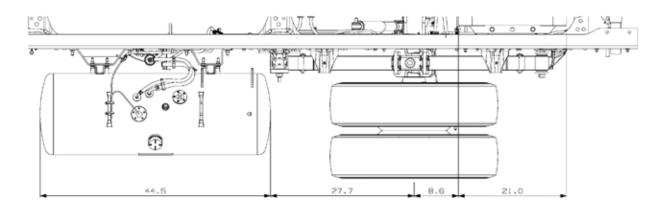


Figure 9.11.1

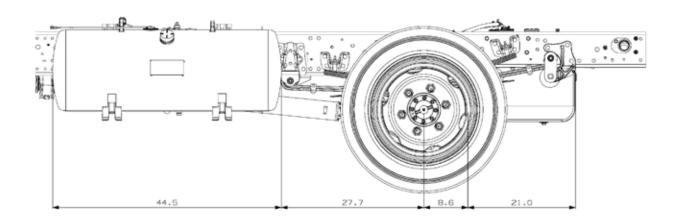


Figure 9.11.2

Optional Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX (150 and 176 WB, LH rail only)

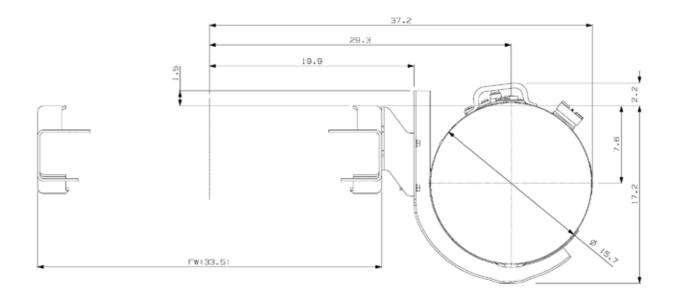


Figure 9.12.1

Cab Tilt

Figure 9.13.1

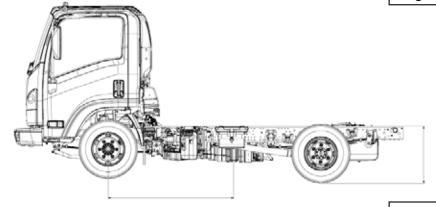
TURNING DIAMETERS

The 3500HD Diesel steering also features a 49.5 inside wheel cut angle. This, coupled with the integral power steering, makes the 3500HD Diesel an extremely maneuverable truck.

B=Minimum turning diameter curb to curb

C=Minimum turning diameter wall to wall

В
C


Figure 9.14.1

WB	B curb to curb	C (ft. wall to wall (ft.		
109.0	31.5	37.1		
132.0	38.7	44.0		
150.0	42.7	48.9		
176.0	51.2	56.4		

Center of Gravity

Horizontal and Vertical CG of Chassis					
		Н	Н		
WB	V	in frame	side		
		tank	tank		
110	22.2	36.2	N/A		
132.5	22.1	42.7	N/A		
150	22.0	47.7	N/A		
176	22.0	55.0	50.3		

Figure 9.15.1

The maximum vertical center of gravity specified below must not be exceeded at maximum GVWR and rated front and rear GAWR. The Center of Gravity (CG) maximum is 63" (1600 mm) above the ground. (LCF Cab Chassis and LCF Stripped Chassis)

Figure 9.15.2

NOTE: The Final Manufacturer must ensure that the combined vertical center of gravity of the chassis, body, and available payload at full GVW does not exceed the maximum vertical center of gravity outlined in the Chevrolet LCF Incomplete Vehicle Document and the GM Body Builders Guide.

The maximum dimensions for a body installed on the LCF chassis are 102 inches wide (outside*) by 91 inches high (inside). Any larger body applications must be approved by GM Upfitter Engineering. Contact us at GMUpfitter.com.

* With 102 inches wide mirror brackets installed in place of standard mirror brackets

Front Axle Chart

Figure 9.16.1

Formulas for calculating height dimensions:

A = Tire Loaded Radius - B

C = Centerline of Axle to Top of Frame Rail at Curb Position
D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	Α	В	С	D	СН	DH	Track	Tire Radius	
										Unload	Load
215/85R 16-E	13,000 lbs.	5,360 lbs.	7.5	6.6	12.8	11.7	27.4	25.8	65.5	14.6	14.1

Figure 9.16.2

Rear Axle Chart

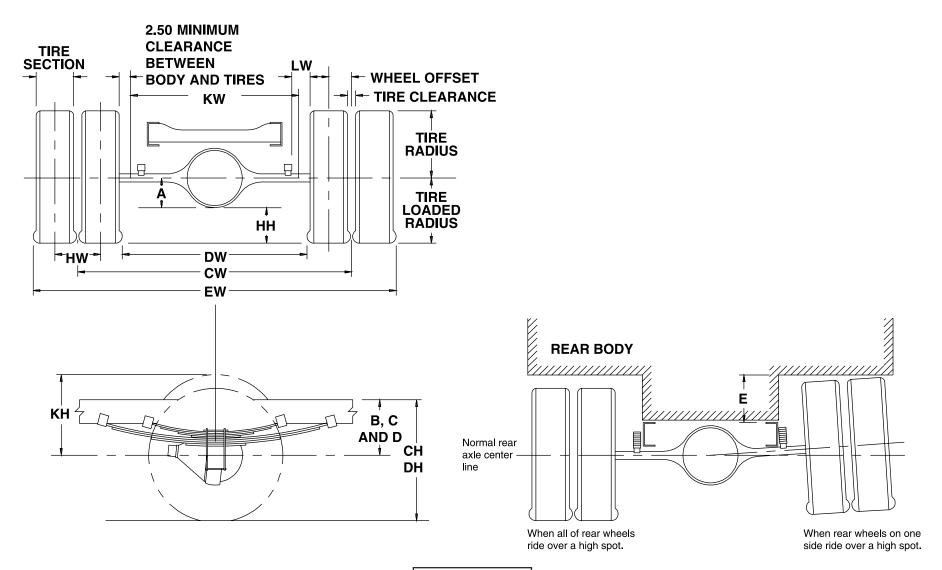


Figure 9.17.1

		Defi	nitions
Α	Centerline of axle to bottom of axle bowl.	DW	Minimum distance between the inner surfaces of the rear tires.
В	Centerline of axle to top of frame rail at metal-to-metal position.	EW	Maximum Rear Width:
С	Centerline of axle to top of frame rail at curb position.		Overall width of the vehicle measured at the outermost surface of the rear tires.
D	Centerline of axle to top of frame rail at design load.	НН	Rear Tire Clearance:
			Minimum clearance between the rear axle and the ground-line.
	Rear Tire Clearance:		Dual Tire Spacing:
E	Minimum clearance required for tires and chain measured from the	HW	Distance between the centerlines of the minimum distance required for tire
	top of the frame at the vertical centerline of the rear axle, when		bounce as measured from the centerline of the rear axle and the top of the
	rear wheels on one side ride over a high spot.		rear tire when one wheel rides over a high spot.
	Rear Frame Height:		
СН	Vertical distance between the normal top of frame rail and	CW	Track Dual Rear Wheel Vehicles:
	the ground-line through the centerline of the rear axle		Distance between the centerlines of the dual wheels measured at the ground-line.
	at curb position.		
	Rear Frame Height:		
DH	Vertical distance between the normal top of frame rail and		
	the ground-line through the centerline of the rear axle at		
	design load.		
	Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance		See Tire Chart for Values

Figure 9.18.1

	Formulas for Calculating Rear Width and Height Dimensions									
CW	= Track	НН	= Tire loaded radius – A							
СН	= Tire loaded radius + C	JH	= KH – B							
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches							
DW	= Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches							
EW	= Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs							

NOTE: Track and overall width may vary with optional equipment.


Figure 9.18.2

Tire	GAWR	Track CW	Α	В	С	D	E
215/85R 16-E	9,880 lbs.	65.0	6.5	9.3	15.4	13.0	7.8

Figure 9.18.3

3500HD Suspension Deflection Charts

Front Suspension Load vs. Deflection (Per Axle) 13,000 lb GVWR

Vertical Spring Deflection (Inches)

Figure 9.19.1

Rear Suspension Load vs. Deflection (Per Axle) 13,000 lb GVWR

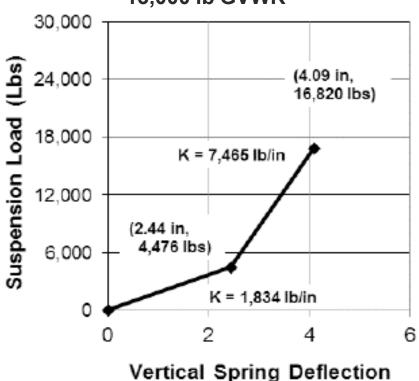


Figure 9.19.2

(Inches)

9.20

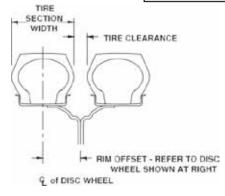
Tire and Disc Wheel Chart – 3500HD

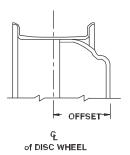
Tire

	Tire L	oad Limit and Co	ld Inflation Press	ures	Maximum Tire Lo			
Tire Size	Single		Du	ıal	Front	Rear	GVWR (Lbs.)	
	Lbs.	PSI	Lbs. PSI		2 Single	4 Dual	1	
215/85R-16E	3,315	85	3,115	85	6,630	12,460	13,000	

Figure 9.20.1

			Tire R	adius					
Tire Size	GVWR (Lbs.)	Loa	ded	Unlo	aded	Tire Section	Tire Clearance	Design Rim	
		Front	Rear	Front	Rear	Width		Width	
215/85R 16-E	13,000	14.1	14.1	14.6	14.6	8.2	1.8	6.0	

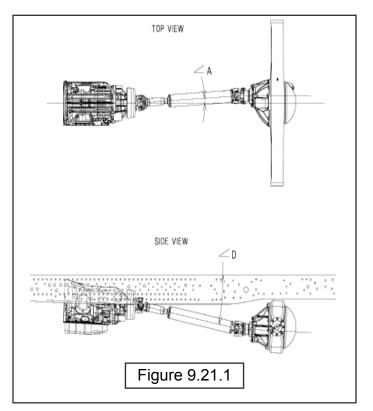

Disc Wheel

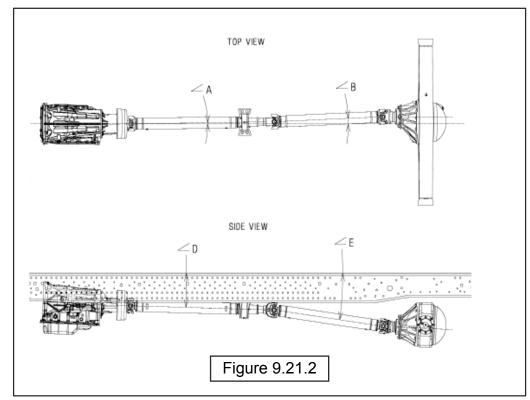

Figure 9.20.2

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
16 x 6 K	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	325 ft-lb. (440 N•m)	6.46	5.0	0.37	5º DC	Steel TOPY

*O.D. Wrench Sizes

Figure 9.20.3





Dimensions in inches

Figure 9.20.4

Propeller Shaft

WheelBase	Top \	/iew	Side View					
(in.)	∠A	∠B	∠D	∠E	Trans	Rear Axle		
109	2.5°	-	10.6°	-	2.5°	2.5°		
132.5	0°	2.7°	5.3°	7.4°	2.5°	2.5°		
150.0	0°	2.7°	2.6°	8.0°	2.5°	2.5°		
176	0°	1.8°	2.1°	5.4°	2.5°	2.5°		

Notes: 1. Angles provided in table are relative to the frame angle. Please take this into consideration for service measurements.

2. Driveline angles are based on the chassis curb weight which includes standard equipment, fuel but no driver, body, or payload.

Propeller Shaft

Wheelbase	109	132.5	150	176
No. of Shafts	1	2	2	2
Trans. Type	6A/T	6A/T	6A/T	6A/T
Shaft #1 O.D.	3.25"	3.25"	3.25"	3.25"
Thickness	0.0906''	0.0906"	0.0906"	0.0906"
Length	36.69"	16.97"	34.29"	43.47"
Туре	A	В	В	В
Shaft #2 O.D.	N/A	3.25"	3.25"	3.25"
Thickness	N/A	0.0906"	0.0906"	0.0906"
Length	N/A	33.78"	34.17"	50.71"
Туре	N/A	С	С	С

Figure 9.22.1

Туре	Description	Illustration
Туре А	1st shaft in 1-piece driveline	
Туре В	1st shaft in 2-piece driveline	
Туре С	2nd shaft in 2-piece driveline	

Figure 9.22.2

9.23

Brake System Diagram 13,000 GVW

Vacuum Over Hydraulic

Please refer to Introduction Section of book for antilock system cautions and wheelbase modification requirements.

Legend for 3500, 3500HD, 4500, 4500HD, 4500XD Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Vacuum Pump
- (4) Check Valve
- (5) Exhaust Brake Valve
- (6) Magnetic Valve
- (7) Check Valve (One-way Valve)
- (8) Vacuum Tank
- (9) 4-Way Connector
- (10) With Metering Valve
- (11) W/O Metering Valve
- (12) Brake Fluid Reservoir
- (13) Electric Vacuum Pump
- (14) Master Cylinder
- (15) Vacuum Booster (Servo Unit)
- (16) Front Wheel Cylinder

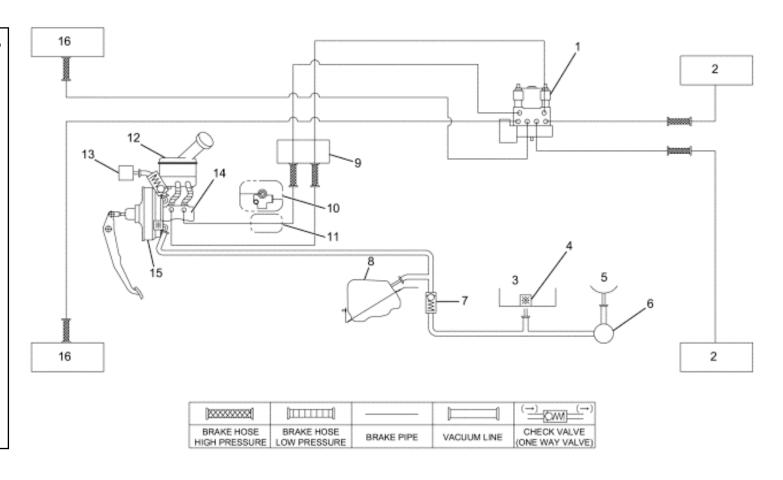



Figure 9.23.1

PTO Location, Drive Gear and Opening Information

Trans.	Opening	Bolt	Α	В	С	D	Е	F	Н	PTO Drive Gear	Ratio of PTO Drv.	No. of	Pitch	Helix	Max. Output Torque
	Location	Pattern								Location	Gear Spd. to Eng. Spd.	Teeth		Angle	
Aisin 460	Left	(Dr2)	12.35	36.89	0	7.85	7.31	2.5°	5.16	PTO Gear	1:1 with turbine	69	N/A	0	108 lbsft. @ 1,700 RPM

Figure 9.24.2

Opening Diagram

Aisin A460 Automatic Torque Converter Lock Up Function

In either the Stationary Preset PTO Mode or Stationary Variable PTO Mode, when engine rpm exceeds 1200 RPM, the torque converter will lock up. The engine rpm can not be modified and the lockup function cannot be turned off. Please not that with PTO applications that operate around 1200 RPM, the transmission software holds the torque converter in lockup until engine speed falls below 1100 RPM.

The lock up function will cancel if the transmission shift lever is moved from the park or neutral positions which will remove the transmission from the stationary mode.

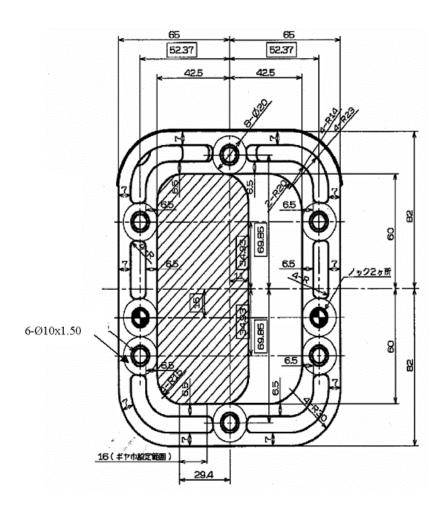


Figure 9.25.1

9.26

In-Frame Diesel Fuel Fill

Installation Instructions

- 1. Disconnect battery.
- 2. Loosen hose from the tie downs. Remove caps from plate on rail.
- 3. Install hoses onto the plate.
- 4. Extend hose out from the driver side of the rail to body rail.
- 5. The filler neck must be mounted to allow the fill plate bracket to be parallel to the frame horizontal.
- 6. Cover with protector wrap and secure with tie wraps.
- 7. Filler hose is set for 102 inches outside width body.
- 8. Filler neck (dimension A) must be between 6.85 inches and 8.5 inches above frame.
- 9. Secure the filler plate to the bottom of the body and check for leaks.
- 10. Ensure that fill hose does not sag, creating an area where the fuel could pool in the fill hose.
- 11. Reconnect battery.

Rear View Fuel Fill

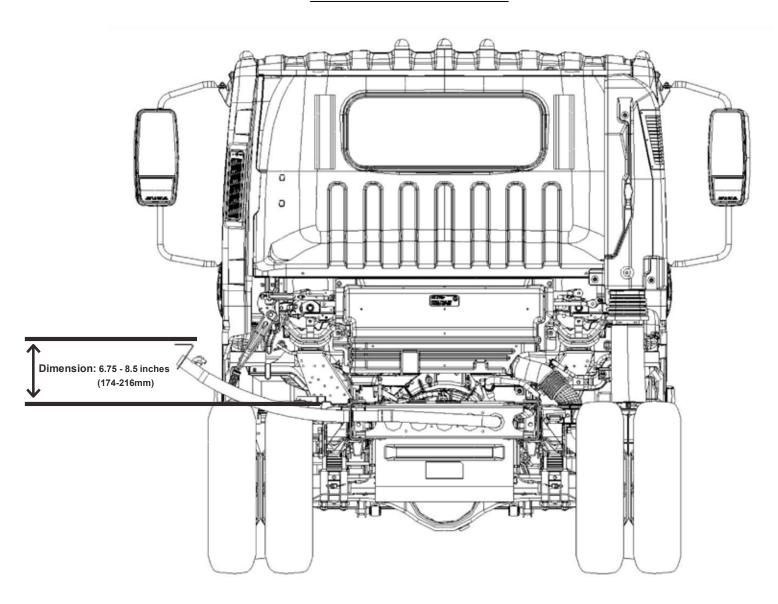
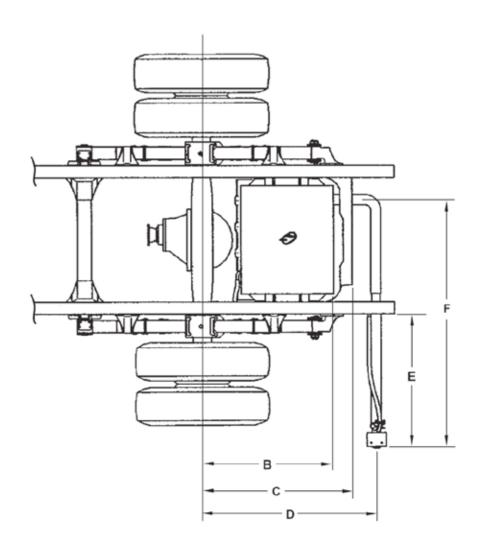



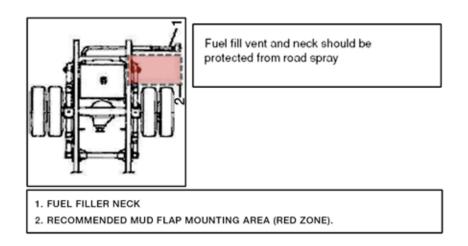
Figure 9.27.1

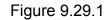
Top View Fuel Fill

Dimensions:

B = 29.75 inches (756 mm)

C = 34.00 inches (863 mm)


D = 39.29 inches (998 mm)


E = 33.86 inches (860 mm)

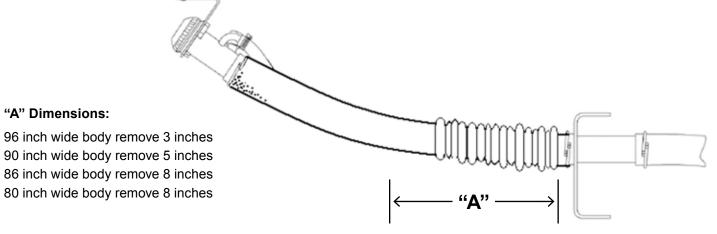

F = 59.60 inches (1,514 mm)

Figure 9.28.1

Hose Modification for Various Width Bodies and Fuel Fill Vent Protection

NOTE: Shorten hose by "A Dimension" based on chart at left.

Figure 9.29.2

"A" Dimensions:

Ultra Low Sulfur Diesel Label

Per EPA Title 40, Part 86, 86:007—35(c), The decal illustrated below must be installed on the vehicle. The decal is included in the fuel fill parts box.

> Ultra Low Sulfur Diesel Fuel Only

N' utiliser que du carburant diesel a teneur ultra-faible en soufre

INSTRUCTIONS FOR DECAL PLACEMENT:

- 1. The decal must be placed as close as possible to the fuel inlet and be clearly visible.
- 2. The decal should be placed above or to the side of the fuel cap to avoid corrosion by possible contact with fuel.
- 3. The decal may be placed on aerodynamic fairings, bodies, etc. as long as the decal is clearly visible and in close proximity to the fuel inlet.
- 4. For installed bodies that have a fuel door, the decal should be placed above or to the side of the fuel door.

Thoroughly clean the area of all grease, dirt, etc. before application of the decal. Apply the decal at room temperature, 65° to 75° F.

Figure 9.30.1

Through the Rail Fuel Fill Frame Hole

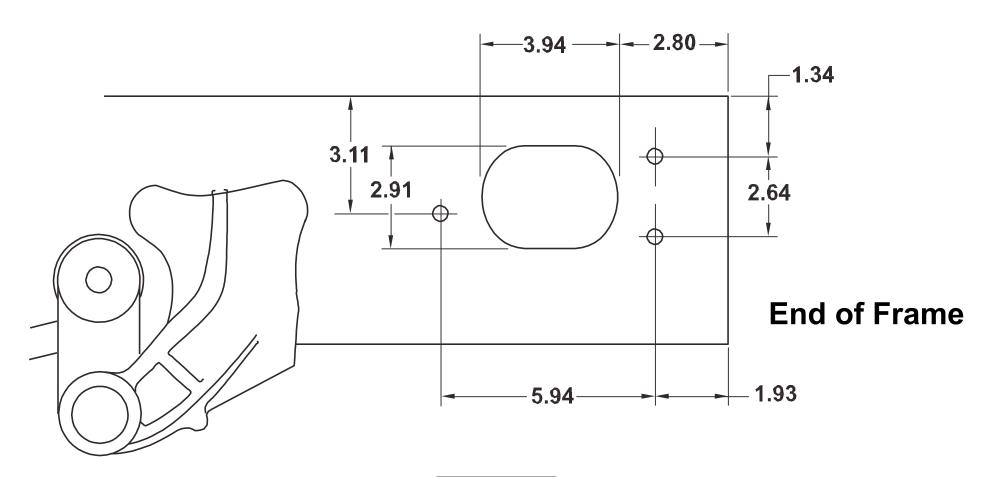


Figure 9.31.1

3500HD Diesel Fuel Filler Kit Instructions

Please review these instructions prior to installation of the fuel filler kit.

Parts Kit: There is a parts kit for the Chevrolet LCF diesel products. Fuel filler kit shown below is used for 13,000 lb GVWR chassis (3500HD). Parts detail is shown in *Figure 9.33.2*. Parts photos are shown in *Figure 9.33.1*.

Figure 9	.32.1
----------	-------

	FUEL FILLER KIT, PART LISTING						
ITEM #	PART NAME PART #						
1	HOSE: FUEL FILLER NECK	**	1				
2	HOSE:FUELFILLER	**	1				
3	CAP: FILLER	**	1				
4	HOSE: ROLL-OVER VALVE	**	1				
5	NECK ASM: FUEL FILLER	**	1				
6	CLIP: JOINT	**	4				
7	PROTECTOR: FILLER HOSE	**	1				
8	CLIP: BAND, HOSE FIXING	**	2				
9	CLIP: RUBBER, HOSE	**	1				
10	BRACKET: FILLER NECK	**	1				
11	SCREW: FILLER NECK	**	3				
12	CAUTION PLATE	**	1				
13	SHUTTER:FUELTANK	**	1				

^{**} See Dealer for all part numbers.

Figure 9.32.2

Installation Instructions and Considerations

The fuel tank shutter valve (13) is meant to improve fuel splash-back performance of the fuel system. This valve (13) is located on the inlet (outboard side) of the fuel filler neck bulkhead assemble that is bolted to the left hand frame rail as shown in *Figure 9.34.1*. This plastic valve snaps into place in the inlet of the frame mounted fuel pipe. The valve should be installed so that the plastic clip is at the top of the valve, so that the flap door opens up, as shown in *Figure 9.34.2*.

Figure 9.33.1

The fuel filler hose should be installed flush against the tank. The clamp should be installed between 1/16" and 3/8" from the tank. This is shown in *Figure 9.34.3* to the right.

Figure 9.33.2

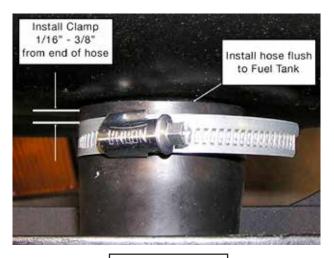
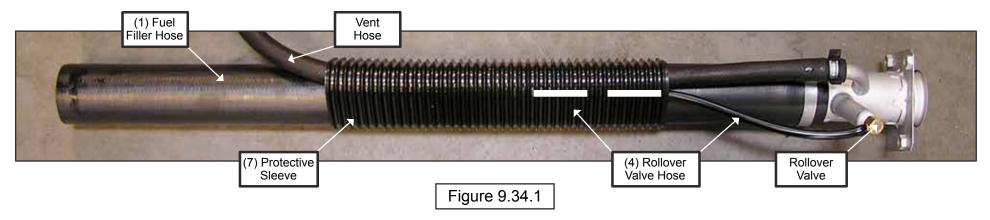



Figure 9.33.3

Roll-Over Valve Tubing

The roll-over valve has a hose attachment that will make this valve less sensitive to water intrusion. In order for the valve to work properly, it is critical that the hose be installed to the rollover valve. The proper assembly of the outer hose is shown in *Figure 9.35.1*.

Filler Neck Installation

The fuel filler neck (5) must be installed with the proper orientation on the body. The neck should be installed with the roll-over valve pointing upward, with the bottom edge of the neck oriented parallel to the ground, plus 33 to minus 7 degrees. See *Figure 9.35.2* for the proper orientation.

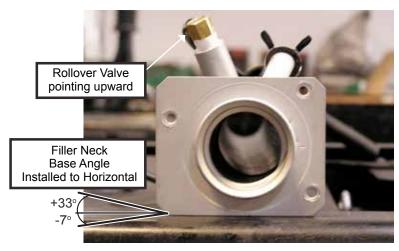
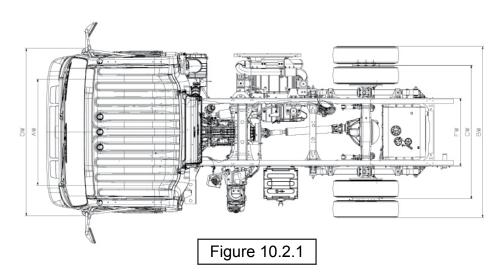



Figure 9.34.2

4500HD Diesel Specifications

MODEL	4500HD Diesel	
GVWR	14,500 lbs.	
WB	109 in, 132.5 in, 150 in. 176 in.	
ENGINE	Isuzu 4-cylinder, in-line 4-cycle, turbocharged, intercooled, direct injection diesel.	
Model/Displacement	4HK1-TC/317 CID (5.19 liters)	
HP (Gross)	14,500 GVWR 215 HP @ 2500 RPM w Automatic Transmission	
Torque(Gross)	14,500 GVWR 452 lb/ft torque @ 1850 RPM w/ Automatic Trans	
Equipment	Dry element air cleaner with vertical intake; 2 rows 564 in². radiator; 7 blade 20.1in diameter fan with viscous drive. Cold weather	
	starting device and an oil cooler. Engine oil level check. Engine warning system with audible warning for low oil pressure,	
	high coolant temperature, and low coolant level. Engine cruise control function. Rear engine cover.	
TRANSMISSION	Aisin A465 6 speed automatic transmission with fifth and sixth gear overdrive with lock up in 2nd, 3rd, 4th, 5th and 6th.	
	PTO capability with automatic torque converter lockup in stationary PTO mode.	
STEERING	Integral power steering 18.8-20.9:1 ratio. Tilt and telescoping steering column.	
FRONT AXLE	Reverse Elliot I" -Beam rated at 6,830 lbs.	
Suspension	Semi-elliptical steel alloy tapered leaf springs with stabilizer bar and shock absorbers.	
GAWR	5,360 lbs.	
REARAXLE	Full floating single speed with hypoid gearing rated at 11,020 lbs.	
Suspension	Semi-elliptical steel alloy multi-leaf springs and shock absorbers.	
GAWR	9,880 lbs.	
WHEELS	16x6.0-K 6 hole disc wheels, painted white.	
TIRES	215/85R-16E (10 pr) LRR (Low Rolling Resistance) tubeless steel belted radials, all season front and rear.	
BRAKES	Dual circuit vacuum assisted hydraulic service brakes with EBD	
	(Electronic Brake Distribution) system for load proportioning of the brake system front disc and self-ad just outboard mounted	
	drum rear. The parking brake is a mechanical, cable actuated, internal expanding drum type, transmission mounted. The exhaust brake is standard and is	
	vacuum operated. 4 channel anti-lock brake system.	
FUEL TANK	30 gal. rectangular steel fuel tank mounted in frame rail behind rear axle. Fuel water separator with indicator light on instrument cluster.	
FRAME	Ladder type channel section straight frame rail 33.5 in wide	
	through the total length of the frame. Yield strength 44,000 psi, section modulus 7.20 in3. RBM 316,800.	
CAB	All steel low cab forward, BBC 70.7 in, 45° mechanical tilt with torsion assist.	
Equipment	TRICOT breathable cloth covered high back driver's seat with two occupant passenger seat. Dual cab mounted exterior mirrors with integral convex mirror, AM/FM CD stereo radio. Tilt and telescoping steering column. Power windows and door locks, floor mats, tinted glass.	
	militor, Alwirmi CD stereo radio. Tilt and telescoping steering column. Power windows and door locks, floor mats, tinted glass.	
ELECTRICAL	12 Volt, negative ground, dual maintenance free batteries, 750 CCA each, 140 Amp alternator with integral regulator.	
OPTIONS	See last page for options	
	NOTE: These selected specifications are subject to change without notice.	

Vehicle Weights, Dimensions and Ratings

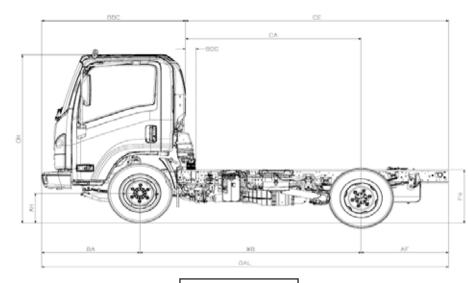


Figure 10.2.2

Dimension Constants:

Code	Inches	Code	Inches	Variab	le Chas	sis Dimer	nsions:		
AH	7.5	BW	83.3	Unit	WB	CA*	CE*	OAL	AF
AW	65.6	CW	65.0				129.6		
BA	48.3	FW	33.5	Inch	132.5	110.0	153.1	224.0	43.1
BBC	70.7	OH	90.8	Inch	150.0	127.5	170.6	241.5	43.1
BOC	7.7/10.2	OW	81.3	Inch	176.0	153.5	196.6	267.5	43.1
FH	31.1			* Effe	ective C	CA & CE	are CA o	r CE les	s BOO

^{*} BOC 7.7 in. w/ 109.0 and 132.5 wb BOC 10.2 in. w/ 150.0 and 176.0 wb

Vertical Exhaust Option Dimensions:

Variabl	e Chass	is Dimens	ions:		
Unit	WB	EFF CA*	EFF CE*	OAL	AF
Inch	109.0	62.5	105.6	200.5	43.1
Inch	132.5	86.0	153.1	224.0	43.1
Inch	150.0	103.5	146.6	241.5	43.1
Inch	176.0	129.5	172.6	267.5	43.1

^{*} Effective CA & CE listed are standard CA or CE less vertical exhaust BOC of 24 inches.

Vertical Exhaust BOC = 24 inches

In-Frame Tank

14,500 lb. GVWR Automatic Transmission Model Chassis Curb and Maximum Payload Weights

Model	WB	RPO	Unit	Front	Rear	Total	Payload
T31003	109.0 in.	EB4	lb.	3907	2057	5964	8536
T32003	132.5 in.	FNJ	lb.	3999	2054	6053	8447
T33003	150.0 in.	FWH	lb.	4061	2034	6095	8405
T34003	176.0 in.	FNW	lb.	4123	2027	6150	8350

Side Mounted Tank (Aux. Tank)

14,500 lb. GVWR Automatic Transmission Model Chassis Curb and Maximum Payload Weights

Model	WB	RPO	Unit	Front	Rear	Total	Payload
T34003	176.0 in.	FNW	lb.	4258	1903	6161	8339

⁸ 10.3

Vehicle Weight Limits:

GVWR Designed Maximum 14,500 lbs.
GAWR, Front 5,360 lbs.
GAWR, Rear 9,880 lbs.

Technical Notes:

Chassis Curb Weight reflects standard equipment and fuel but no driver or payload.

Maximum Payload Weight is the allowed maximum for equipment, body, payload and driver and is calculated by subtracting chassis curb weight from the GVWR.

	Weights for Options						
RPO							
NPV	Cross rail horizontal DPF/SCR with vertical exhaust (8)	100 / 100					
9D2	Speed Limited to 58 MPH	0/0					
9C2	Speed Limited to 65 MPH	0/0					
9E2	Speed Limited to 68 MPH	0/0					
ATG	Keyless entry	3/0					
9B9	Speed Limited to 70 MPH	0/0					
AJG	Suspension seat	18 / 0					
KO5	Block Heater (cord)	1/0					
KPG	Locking DEF tank cap	0/0					
UIZ	AM/FM/CD Radio with Ax input/USB port and Bluetooth	0/0					
KQJ	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0					
DB6	Heated dual remote control mirrors (15" head)	3/0					
G7M	Air Deflector roof mounted (not available in Crew Cab)	64 / 0					
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer	19 / 0					
KPK	Engine Oil Pan Heater (120v 300w)	2 / 0					
KPJ	Engine emergency shutdown system HWT, LWL, LOP (4)	0/0					
NLX	33 Gallon Additional Diesel Fuel Tank mounted on LH side 150, 176 wb, std. cab	(7)					
PTO	PTO Enable Switch and Engine Idle Up Switch recommended for PTO and Idle applications only (2)	1/0					
DB8	Heated Mirrors	1/0					
TBD	Mirror Bracket for 102" wide body	1/0					
9W8	Seat Covers Standard Cab (9)	6/0					
IX2	Rear Body Dome Lamp Switch (6)	1/0					
UL5	Delete Standard AM/FM/CD Radio	3/0					
KQN	Engine Idle Shutdown (Timer set at 5 minutes for engine shutdown)	0/0					
UZF	Back up alarm	0/2					
V22	Chrome Grille	1/0					

Frame and Crossmember Specifications

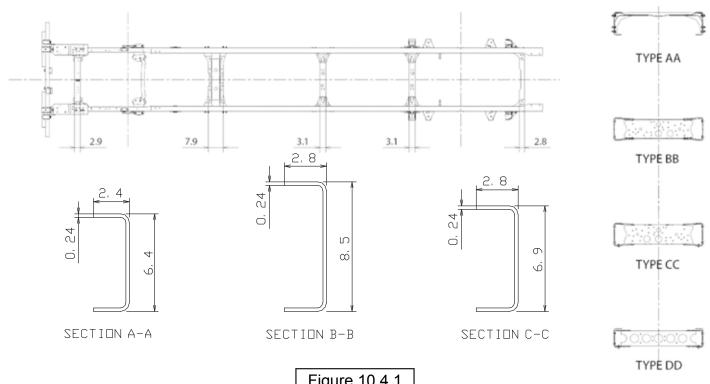


Figure 10.4.1

Wheelbase	Frame										
	Thickness	В	С	D E F				3			
109	0.24	28.3	8.2	AA	46.5		-	CC	24.2	DD	33.8
132.5	0.24	28.3	8.2	AA	46.5	BB	57.5	CC	24.2	DD	33.8
150	0.24	28.3	8.2	AA	46.5	BB	57.9	CC	24.2	DD	33.8
176	0.24	28.3	8.2	AA	46.5	BB	74.4	CC	24.2	DD	33.8

Figure 10.4.2

10.5

Frame Chart

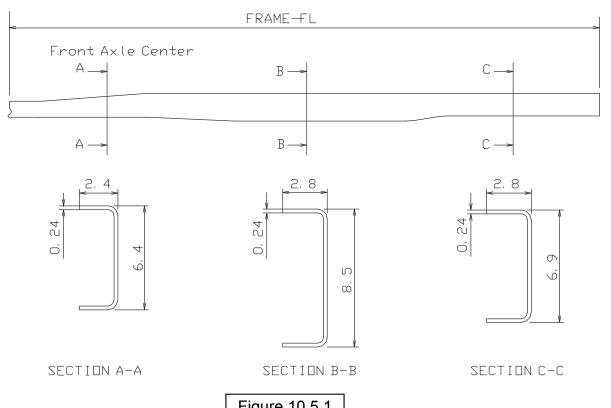


Figure 10.5.1

Wheelbase	Frame FL	Frame Thickness
109.0	182.5	0.24
132.5	206.1	0.24
150.0	223.8	0.24
176.0	249.8	0.24

Figure 10.5.2

4500HD Diesel Standard Cab - Top View

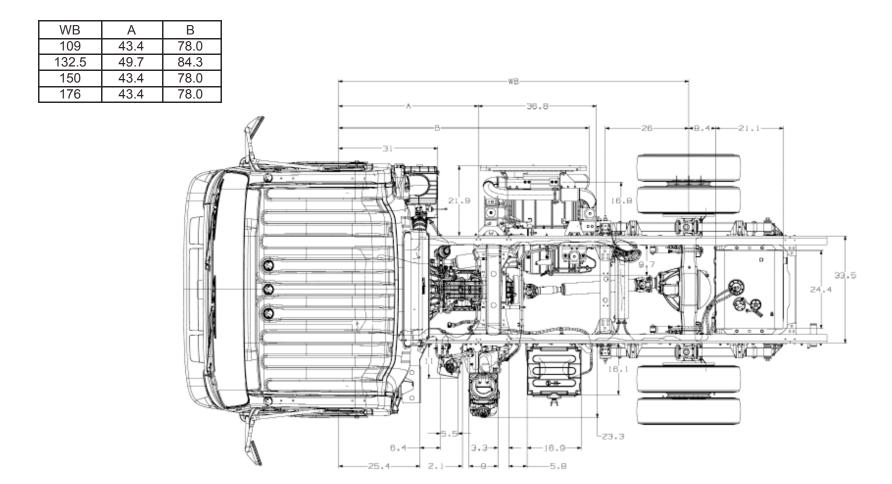


Figure 10.6.1

4500HD Diesel Standard Cab - Left Side View

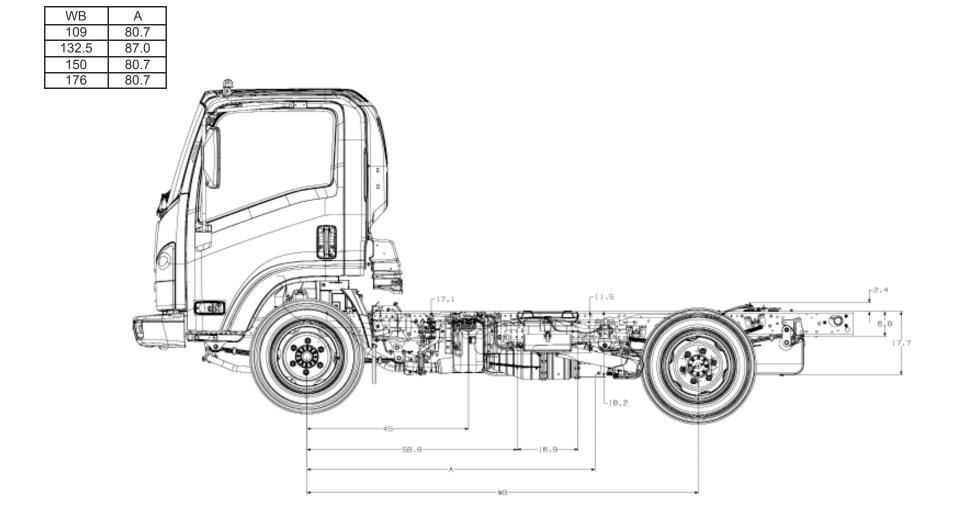


Figure 10.7.1

4500HD Diesel Standard Cab - Right Side View

WB	Α
109	44.0
132.5	50.3
150	44.0
176	44.0

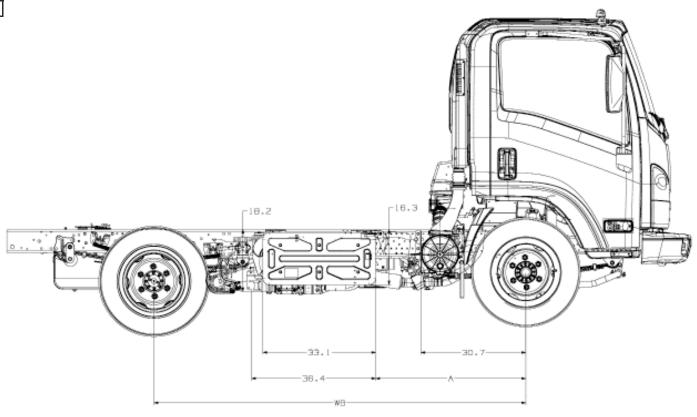
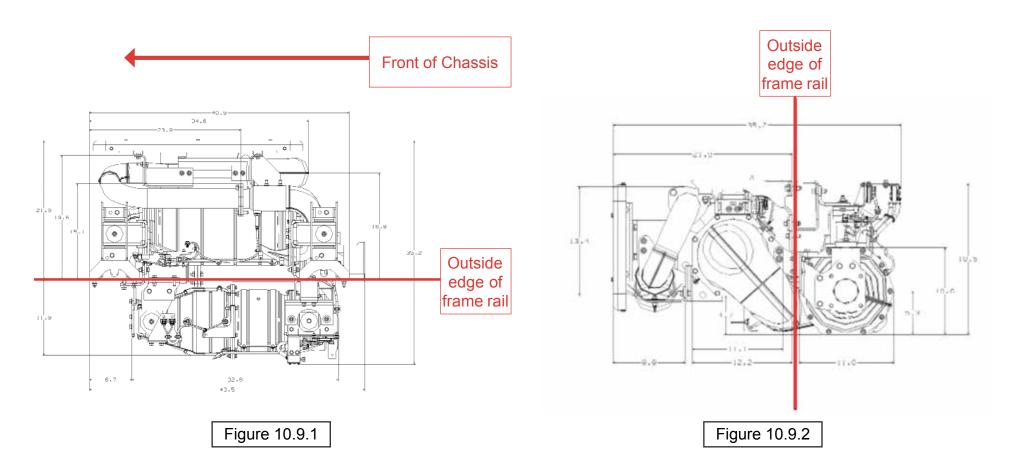



Figure 10.8.1

SCR / DPF 4HK1-TC

10.10

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 150 Wheelbase

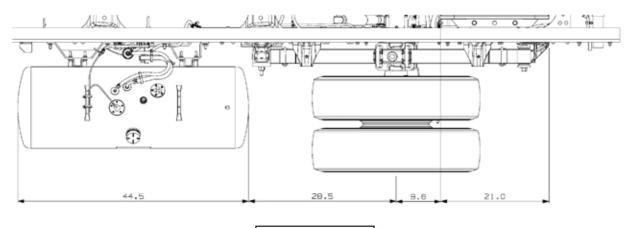


Figure 10.10.1

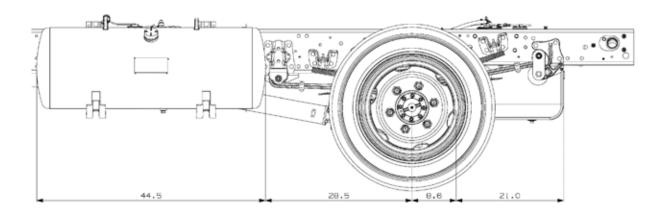


Figure 10.10.2

⁸ 10.11

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase

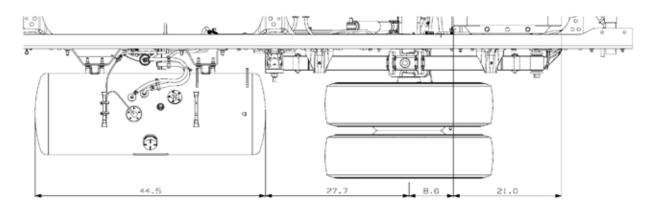


Figure 10.11.1

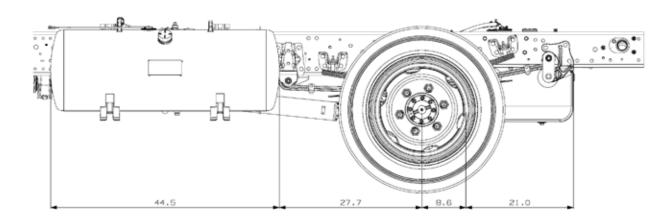


Figure 10.11.2

10.12

Option Side Fuel Tank in place of the Standard In Rail Fuel Tank on T34003 ONLY Side View 176 Wheelbase

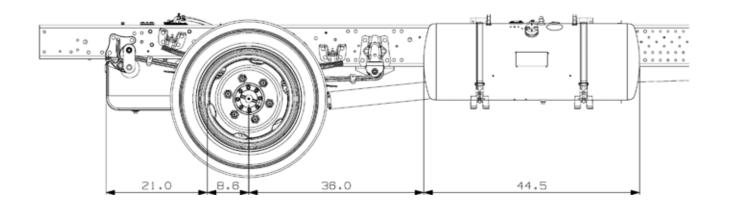


Figure 10.12.1

⁸ 10.13

Optional Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX (150 and 176 WB, LH rail only)

Optional Side Fuel Tank replacing standard In Rail Fuel Tank
(176 WB only, RH rail only)

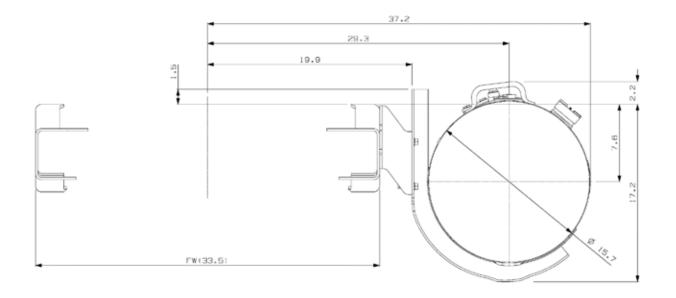


Figure 10.13.1

Cab Tilt

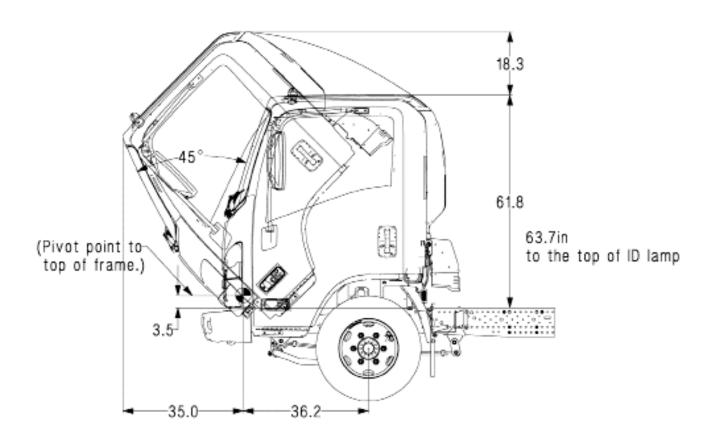
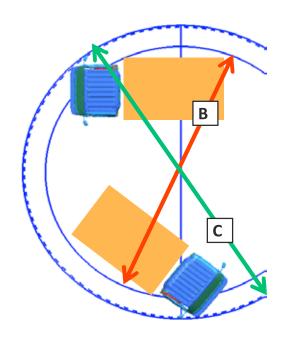


Figure 10.14.1


TURNING DIAMETERS

The LCF Diesel steering also features a 49.5 inside wheel cut angle. This, coupled with the integral power steering, makes the LCF Diesel an extremely maneuverable truck.

B=Minimum turning diameter curb to curb

C=Minimum turning diameter wall to wall

WB	B curb to curb	C (ft. wall to wall (ft.)
109.0	31.5	37.1
132.0	38.7	44.0
150.0	42.7	48.9
176.0	51.2	56.4

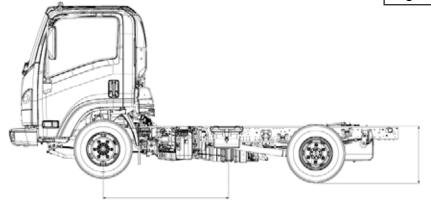

LCF Diesel Turning Circle Diagram

Figure 10.15.1

Center of Gravity

Horizontal and Vertical CG of Chassis						
		Н	Н			
WB	V	in frame	side			
		tank	tank			
110	22.2	36.2	N/A			
132.5	22.1	42.7	N/A			
150	22.0	47.7	N/A			
176	22.0	55.0	50.3			

Figure 10.16.1

The maximum vertical center of gravity specified below must not be exceeded at maximum GVWR and rated front and rear GAWR. The Center of Gravity (CG) maximum is 63" (1600 mm) above the ground. (LCF Cab Chassis and LCF Stripped Chassis)

Figure 10.16.2

NOTE: The Final Manufacturer must ensure that the combined vertical center of gravity of the chassis, body, and available payload at full GVW does not exceed the maximum vertical center of gravity outlined in the Chevrolet LCF Incomplete Vehicle Document and the GM Body Builders Guide.

The maximum dimensions for a body installed on the LCF chassis are 102 inches wide (outside*) by 91 inches high (inside). Any larger body applications must be approved by GM Upfitter Engineering. Contact us on GMUpfitter.com.

* With 102 inches wide mirror brackets installed in place of standard mirror brackets

Front Axle Chart

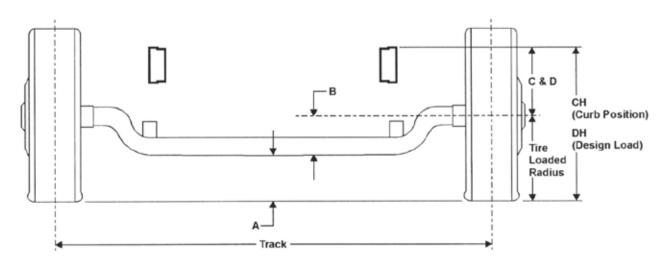


Figure 10.17.1

Formulas for calculating height dimensions:

A = Tire Loaded Radius - B

C = Centerline of Axle to Top of Frame Rail at Curb Position

D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	Α	В	С	D	СН	DH	Track	Tire Radius	
										Unload	Load
215/85R 16-E	14,500 lbs.	5,360 lbs.	7.5	6.6	12.8	11.7	27.4	25.8	65.5	14.6	14.1

Figure 10.17.2

Rear Axle Chart

Figure 10.18.1

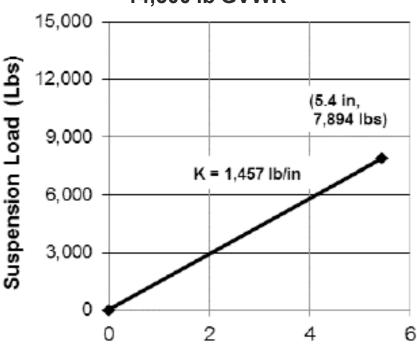
10.19

		Defi	nitions
Α	Centerline of axle to bottom of axle bowl.	DW	Minimum distance between the inner surfaces of the rear tires.
В	Centerline of axle to top of frame rail at metal-to-metal position.	EW	Maximum Rear Width:
С	Centerline of axle to top of frame rail at curb position.		Overall width of the vehicle measured at the outermost surface of the rear tires.
D	Centerline of axle to top of frame rail at design load.	НН	Rear Tire Clearance:
			Minimum clearance between the rear axle and the ground-line.
	Rear Tire Clearance:		Dual Tire Spacing:
E	Minimum clearance required for tires and chain measured from the	HW	Distance between the centerlines of the minimum distance required for tire
	top of the frame at the vertical centerline of the rear axle, when		bounce as measured from the centerline of the rear axle and the top of the
	rear wheels on one side ride over a high spot.		rear tire when one wheel rides over a high spot.
	Rear Frame Height:		
СН	Vertical distance between the normal top of frame rail and	CW	Track Dual Rear Wheel Vehicles:
	the ground-line through the centerline of the rear axle		Distance between the centerlines of the dual wheels measured at the ground-line.
	at curb position.		
	Rear Frame Height:		
DH	Vertical distance between the normal top of frame rail and		
	the ground-line through the centerline of the rear axle at		
	design load.		
	Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance		See Tire Chart for Values

Figure 10.19.1

	Formulas for Calculating Rear Width and Height Dimensions									
CW	= Track	Н	= Tire loaded radius – A							
СН	= Tire loaded radius + C	JH	= KH – B							
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches							
DW	= Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches							
EW	= Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs							

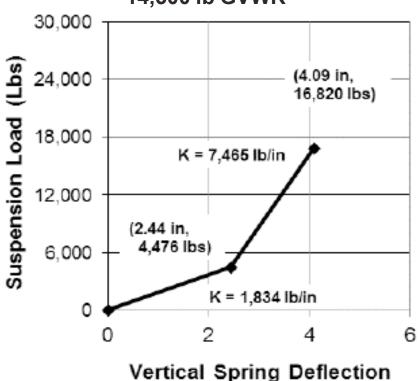
NOTE: Track and overall width may vary with optional equipment.


Figure 10.19.2

Tire	GAWR	Track CW	Α	В	С	D	E
215/85R 16-E	9,880 lbs.	65.0	6.5	9.3	15.4	13.0	7.8

Figure 10.19.3

4500HD Suspension Deflection Charts


Front Suspension Load vs. Deflection (Per Axle) 14,500 lb GVWR

Vertical Spring Deflection (Inches)

Figure 10.20.1

Rear Suspension Load vs. Deflection (Per Axle) 14,500 lb GVWR

(Inches)

Figure 10.20.2

g 10.21

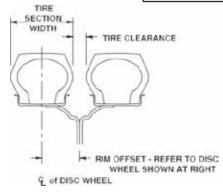
Tire and Disc Wheel Chart – 4500HD

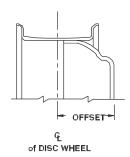
Tire

	Tire L	oad Limit and Co	ld Inflation Press	ures	Maximum Tire Lo	ad Limits (lbs.)	GVWR (Lbs.)	
Tire Size	Sin	igle	Du	ıal	Front	Rear		
	Lbs.	PSI	Lbs.	PSI	2 Single	4 Dual		
215/85R-16E	3,315	85	3,115	85	6,630	12,460	14,500	

Figure 10.21.1

			Tire R	adius					
Tire Size	GVWR (Lbs.)	Loa	ded	Unlo	aded	Tire Section	Tire Clearance	Design Rim	
		Front	Rear	Front	Rear	Width		Width	
215/85R 16-E	14,500	14.1	14.1	14.6	14.6	8.2	1.8	6.0	


Figure 10.21.2


Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
16 x 6 K	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	325 ft-lb. (440 N•m)	6.46	5.0	0.37	5º DC	Steel TOPY

*O.D. Wrench Sizes

Disc Wheel

Figure 10.21.3

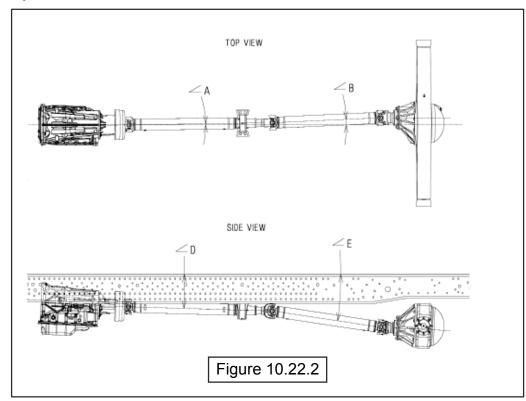

Dimensions in inches

Figure 10.21.4

10.22

Propeller Shaft

WheelBase	Top \	/iew	Side View					
(in.)	∠A	∠B	∠D	∠E	Trans	Rear Axle		
109	2.5°	-	10.6°	-	2.5°	2.5°		
132.5	0°	2.7°	5.3°	7.4°	2.5°	2.5°		
150.0	0°	2.7°	2.6°	8.0°	2.5°	2.5°		
176	0°	1.8°	2.1°	5.4°	2.5°	2.5°		

Notes: 1. Angles provided in table are relative to the frame angle. Please take this into consideration for service measurements.

2. Driveline angles are based on the chassis curb weight which includes standard equipment, fuel but no driver, body, or payload.

Propeller Shaft

Wheelbase	109	132.5	150	176
No. of Shafts	1	2	2	2
Trans. Type	6A/T	6A/T	6A/T	6A/T
Shaft #1 O.D.	3.25"	3.25"	3.25"	3.25"
Thickness	0.0906"	0.0906"	0.0906"	0.0906"
Length	36.69"	16.97"	34.29"	43.47"
Туре	A	В	В	В
Shaft #2 O.D.	N/A	3.25"	3.25"	3.25"
Thickness	N/A	0.0906''	0.0906"	0.0906"
Length	N/A	33.78"	34.17"	50.71"
Туре	N/A	С	С	С

Figure 10.23.1

Туре	Description	Illustration
Туре А	1st shaft in 1-piece driveline	
Туре В	1st shaft in 2-piece driveline	
Туре С	2nd shaft in 2-piece driveline	

Figure 10.23.2

Brake System Diagram 14,500 GVW

Vacuum Over Hydraulic

Please refer to Introduction Section of book for antilock system cautions and wheelbase modification requirements.

Legend for 3500, 3500HD, 4500, 4500HD, 4500XD Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Vacuum Pump
- (4) Check Valve
- (5) Exhaust Brake Valve
- (6) Magnetic Valve
- (7) Check Valve (One-way Valve)
- (8) Vacuum Tank
- (9) 4-Way Connector
- (10) With Metering Valve
- (11) W/O Metering Valve
- (12) Brake Fluid Reservoir
- (13) Electric Vacuum Pump
- (14) Master Cylinder
- (15) Vacuum Booster (Servo Unit)
- (16) Front Wheel Cylinder

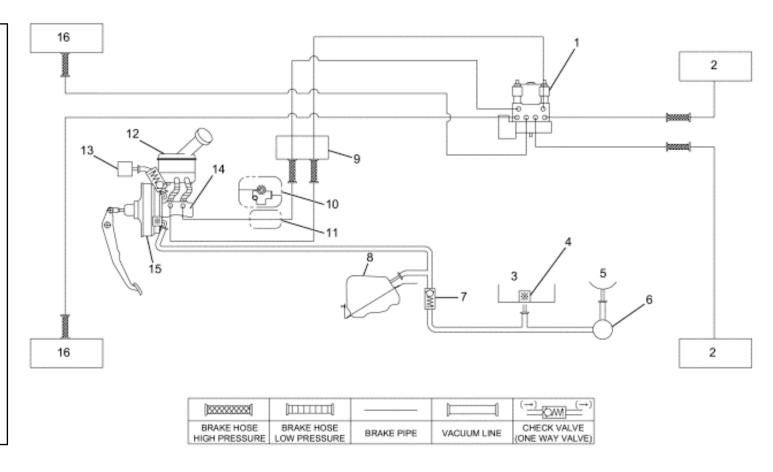


Figure 10.24.1

PTO Location, Drive Gear and Opening Information

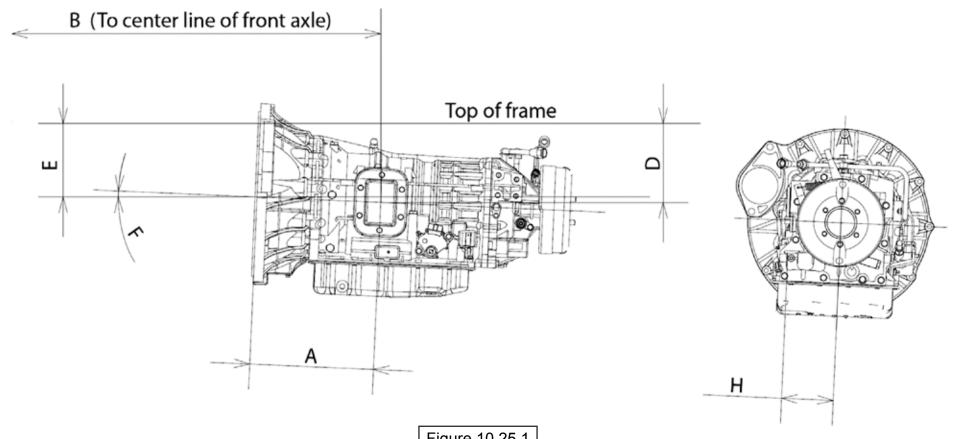


Figure 10.25.1

Trans.	Opening Location	Bolt Pattern	Α	В	С	D	E	F	Н	PTO Drive Gear Location	Ratio of PTO Drv. Gear Spd. to Eng. Spd.	No. of Teeth	Pitch	Helix Angle	Max. Output Torque
Aisin 465	Left	(Dr2)	12.35	36.89	0	7.85	7.31	2.5°	5.16	PTO Gear	1:1 with turbine	69	N/A	0	134 lbsft. @ 1,700 RPM

Figure 10.25.2

Opening Diagram

Aisin A460 Automatic Torque Converter Lock Up Function

In either the Stationary Preset PTO Mode or Stationary Variable PTO Mode, when engine rpm exceeds 1200 RPM, the torque converter will lock up. The engine rpm can not be modified and the lockup function cannot be turned off. Please not that with PTO applications that operate around 1200 RPM, the transmission software holds the torque converter in lockup until engine speed falls below 1100 RPM.

The lock up function will cancel if the transmission shift lever is moved from the park or neutral positions which will remove the transmission from the stationary mode.

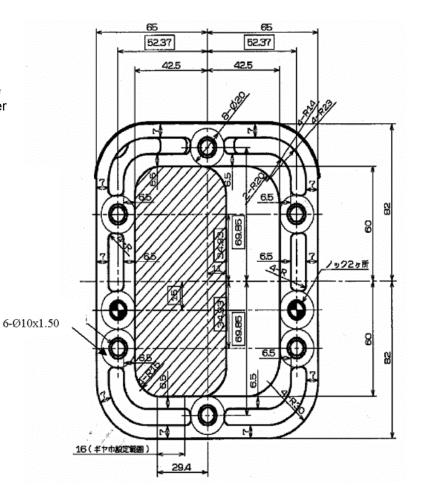


Figure 10.26.1

Additional PTO Functions

For certain applications the Automatic regeneration function can be inhibited (Example Airport Ground Support vehicles).

For certain applications the Automatic regeneration function can be enabled in the PTO stationary mode (Example Lawn care and carpet cleaning).

For certain applications the Automatic regeneration function can be enabled in the PTO mobile mode (Example Line painting).

Please refer to the PTO section of the BBG (section 17) for further details.

10.27

In-Frame Diesel Fuel Fill

Installation Instructions

- 1. Disconnect battery.
- 2. Loosen hose from the tie downs. Remove caps from plate on rail.
- 3. Install hoses onto the plate.
- 4. Extend hose out from the driver side of the rail to body rail.
- 5. The filler neck must be mounted to allow the fill plate bracket to be parallel to the frame horizontal.
- 6. Cover with protector wrap and secure with tie wraps.
- 7. Filler hose is set for 102 inches outside width body.
- 8. Filler neck (dimension A) must be between 6.85 inches and 8.5 inches above frame.
- 9. Secure the filler plate to the bottom of the body and check for leaks.
- 10. Ensure that fill hose does not sag, creating an area where the fuel could pool in the fill hose.
- 11. Reconnect battery.

Rear View Fuel Fill

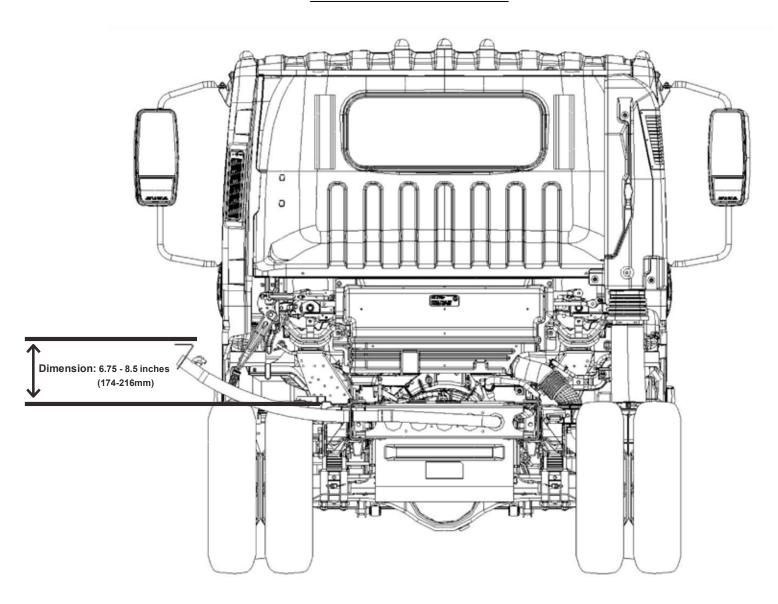
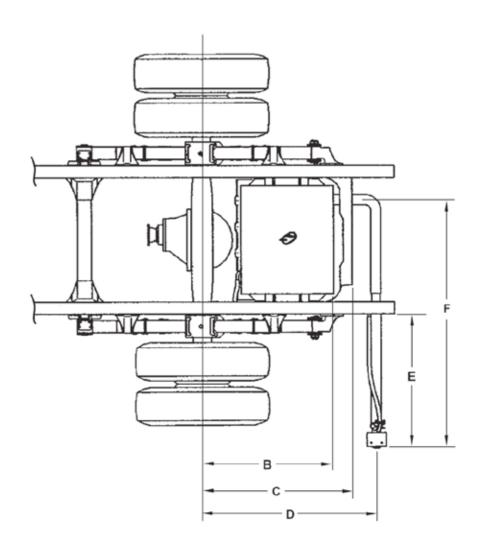



Figure 10.28.1

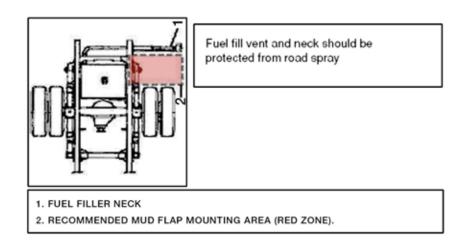
Top View Fuel Fill

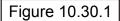
Dimensions:

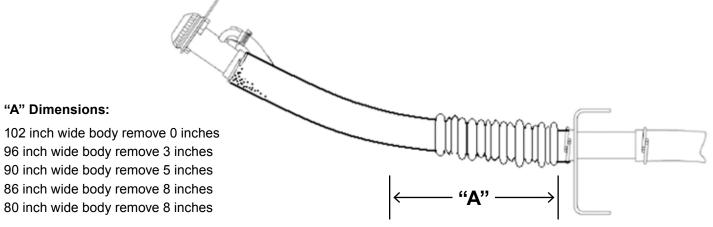
B = 29.75 inches (756 mm)

C = 34.00 inches (863 mm)

D = 39.29 inches (998 mm)


E = 33.86 inches (860 mm)


F = 59.60 inches (1,514 mm)


Figure 10.29.1

10.30

Hose Modification for Various Width Bodies and Fuel Fill Vent Protection

NOTE: Shorten hose by "A Dimension" based on chart at left.

Figure 10.30.2

"A" Dimensions:

Ultra Low Sulfur Diesel Label

Per EPA Title 40, Part 86, 86:007—35(c), The decal illustrated below must be installed on the vehicle. The decal is included in the fuel fill parts box.

> Ultra Low Sulfur Diesel Fuel Only

N' utiliser que du carburant diesel a teneur ultra-faible en soufre

INSTRUCTIONS FOR DECAL PLACEMENT:

- 1. The decal must be placed as close as possible to the fuel inlet and be clearly visible.
- 2. The decal should be placed above or to the side of the fuel cap to avoid corrosion by possible contact with fuel.
- 3. The decal may be placed on aerodynamic fairings, bodies, etc. as long as the decal is clearly visible and in close proximity to the fuel inlet.
- 4. For installed bodies that have a fuel door, the decal should be placed above or to the side of the fuel door.

Thoroughly clean the area of all grease, dirt, etc. before application of the decal. Apply the decal at room temperature, 65° to 75° F.

Figure 10.31.1

Through the Rail Fuel Fill Frame Hole

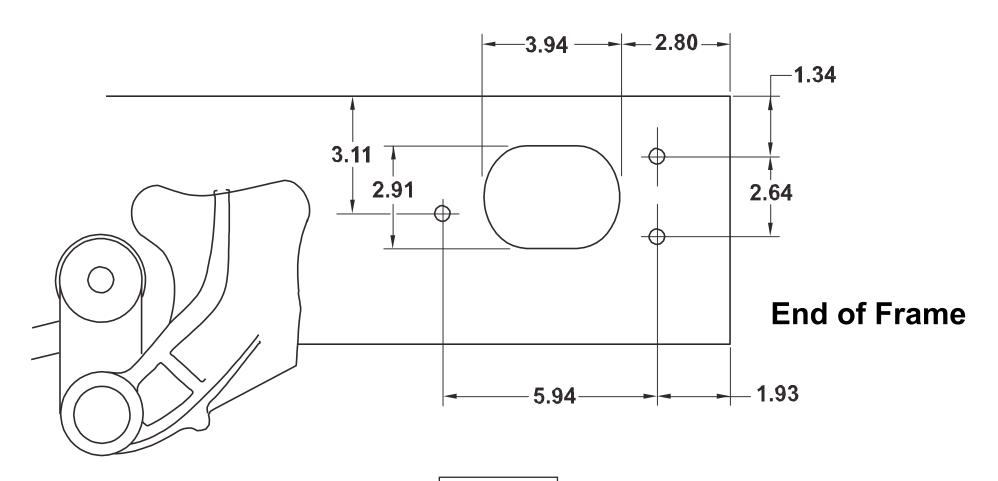
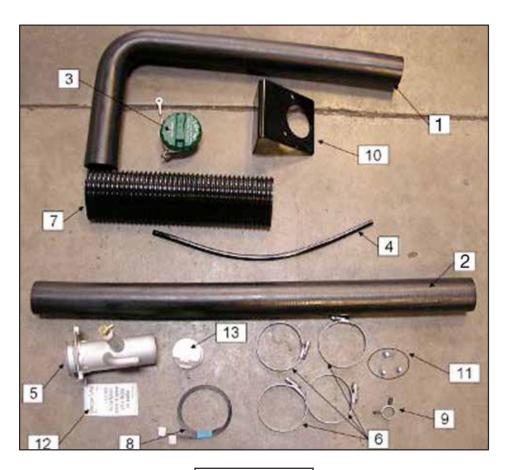



Figure 10.32.1

4500HD Diesel Fuel Filler Kit Instructions

Please review these instructions prior to installation of the fuel filler kit.

Parts Kit: There is a parts kit for the Chevrolet LCF diesel product. Fuel filler kit shown below is used for 14,500 lb and higher GVWR chassis (3500HD, 4500HD, 4500XD, 5500HD, 5500XD). Parts list is shown in *Figure 10.33.1*.

Figure	10.33.1
--------	---------

	FUEL FILLER KIT									
ITEM #	PART NAME	PART#	QTY							
1	HOSE: FUEL FILLER NECK	**	1							
2	HOSE:FUELFILLER	**	1							
3	CAP: FILLER	**	1							
4	HOSE: ROLL-OVER VALVE	**	1							
5	NECK ASM: FUEL FILLER	**	1							
6	CLIP: JOINT	**	4							
7	PROTECTOR: FILLER HOSE	**	1							
8	CLIP: BAND, HOSE FIXING	**	2							
9	CLIP: RUBBER, HOSE	**	1							
10	BRACKET: FILLER NECK	**	1							
11	SCREW: FILLER NECK	**	3							
12	CAUTION PLATE	**	1							
13	SHUTTER:FUELTANK	**	1							

^{**} See Dealer for all part numbers.

Figure 10.33.2

Installation Instructions and Considerations

The fuel tank shutter valve (13) is meant to improve fuel splash-back performance of the fuel system. This valve (13) is located on the inlet (outboard side) of the fuel filler neck bulkhead assemble that is bolted to the left hand frame rail as shown in *Figure 10.34.1*. This plastic valve snaps into place in the inlet of the frame mounted fuel pipe. The valve should be installed so that the plastic clip is at the top of the valve, so that the flap door opens up, as shown in *Figure 10.34.2*.

Figure 10.34.1

The fuel filler hose should be installed flush against the tank. The clamp should be installed between 1/16" and 3/8" from the tank. This is shown in *Figure 10.34.3* to the right.

Figure 10.34.2

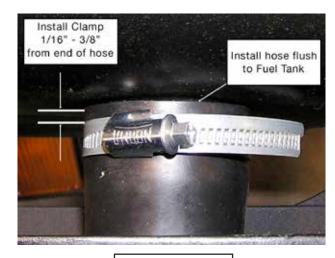
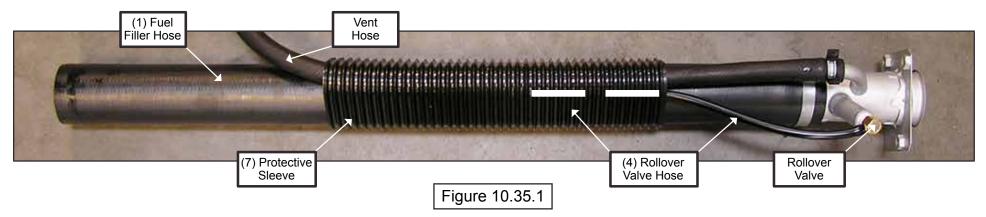



Figure 10.34.3

Roll-Over Valve Tubing

The roll-over valve has a hose attachment that will make this valve less sensitive to water intrusion. In order for the valve to work properly, it is critical that the hose be installed to the rollover valve. The proper assembly of the outer hose is shown in *Figure 10.35.1*.

Filler Neck Installation

The fuel filler neck (5) must be installed with the proper orientation on the body. The neck should be installed with the roll-over valve pointing upward, with the bottom edge of the neck oriented parallel to the ground, plus 33 to minus 7 degrees. See *Figure 10.35.2* for the proper orientation.

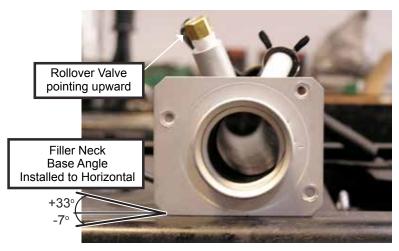
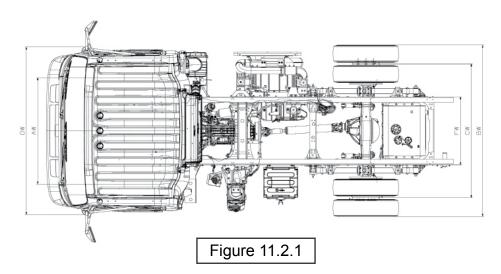



Figure 10.35.2

4500XD Diesel Specifications

MODEL	4500XD Diesel
GVWR	16,000 lbs.
WB	109 in, 132.5 in, 150 in. 176 in.
ENGINE	Isuzu 4-cylinder, in-line 4-cycle, turbocharged, intercooled, direct injection diesel.
Model/Displacement	4HK1-TC/317 CID (5.19 liters)
HP (Gross)	215 HP @ 2500 RPM w/ Automatic Transmission
Torque(Gross)	452 lb/ft torque @ 1850 RPM w/ Automatic Transmission
Equipment	Dry element air cleaner with vertical intake; 2 rows 564 in². radiator; 7 blade 20.1in diameter fan with viscous drive. Cold weather
	starting device and an oil cooler. Engine oil level check. Engine warning system with audible warning for low oil pressure,
	high coolant temperature, and low coolant level. Engine cruise control function. Rear engine cover.
TRANSMISSION	Aisin A465 6 speed automatic transmission with fifth and sixth gear overdrive with lock up in 2nd, 3rd, 4th, 5th and 6th.
	PTO capability with automatic torque converter lockup in stationary PTO mode.
STEERING	Integral power steering 18.8-20.9:1 ratio. Tilt and telescoping steering column.
FRONTAXLE	Reverse Elliot I" -Beam rated at 6,830 lbs.
Suspension	Semi-elliptical steel alloy tapered leaf springs with stabilizer bar and shock absorbers.
GAWR	6,630 lbs.
REARAXLE	Full floating single speed with hypoid gearing rated at 11,020 lbs.
Suspension	Semi-elliptical steel alloy multi-leaf springs and shock absorbers.
GAWR	11,020 lbs.
WHEELS	19.5x6.0-K 6 hole disc wheels, painted white
TIRES	225/70R-19.5 F (12 pr) LRR (Low Rolling Resistance) tubeless steel belted radials, all season, front and rear.
BRAKES	Dual circuit vacuum assisted hydraulic service brakes with EBD
	(Electronic Brake Distribution) system for load proportioning of the brake system front disc and self-ad just outboard mounted
	drum rear. The parking brake is a mechanical, cable actuated, internal expanding drum type, transmission mounted. The exhaust brake is standard and is
	vacuum operated. 4 channel anti-lock brake system.
FUEL TANK	30 gal. rectangular steel fuel tank mounted in frame rail behind rear axle. Fuel water separator with indicator light on instrument cluster.
FRAME	Ladder type channel section straight frame rail 33.5 in wide
	through the total length of the frame. Yield strength 44,000 psi, section modulus 7.20 in3. RBM 316,800.
CAB	All steel low cab forward, BBC 70.7 in, 45° mechanical tilt with torsion assist.
Equipment	TRICOT breathable cloth covered high back driver's seat with two
	occupant passenger seat. Dual cab mounted exterior mirrors with integral convex mirror. Tilt and telescoping steering column. Power windows and door locks, floor mats, tinted glass.
ELECTRICAL	12 Volt, negative ground, dual maintenance free batteries, 750 CCA each, 140 Amp alternator with integral regulator.
OPTIONS	
OPTIONS	See last page for options
	NOTE: These selected specifications are subject to change without notice.

Vehicle Weights, Dimensions and Ratings

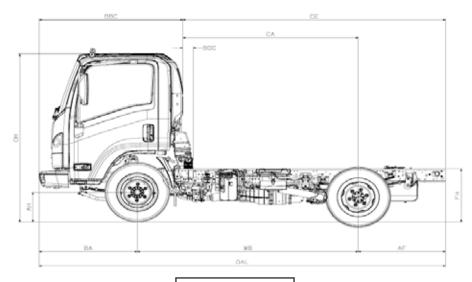


Figure 11.2.2

In-Frame Tank

16000 lb. GVWR Automatic Transmission Model

Chassis	Curb and	Maximum	Payload	Weights
Model	WR	RPO	Unit	Front

Model	WB	RPO	Unit	Front	Rear	Total	Payload
T41003	109.0 in	EB4	lb.	4103	2290	6393	9607
T42003	132.5 in	FNJ	lb.	4194	2288	6482	9518
T43003	150.0 in	FWH	lb.	4256	2267	6523	9477
T44003	176.0 in	FNW	lb.	4296	2283	6579	9421

Side Mounted Tank

16,000 lb. GVWR Automatic Transmission Model Chassis Curb and Maximum Payload Weights

Model	WB	RPO	Unit	Front	Rear	Total	Payload
T44003	176.0 in	FNW	lb.	4430	2160	6590	9410

Vertical Exhaust Option Dimensions:

Variable Chassis Dimensions:

Unit	WB	EFF CA*	EFF CE*	OAL	AF
Inch	109.0	62.5	105.6	200.5	43.1
Inch	132.5	86.0	153.1	224.0	43.1
Inch	150.0	103.5	146.6	241.5	43.1
Inch	176.0	129.5	172.6	267.5	43.1

^{*} Effective CA & CE listed are standard CA or CE less vertical exhaust BOC of 24 inches.

Vertical Exhaust BOC = 24 inches

Variable Chassis Dimensions:

Unit	WB	CA*	CE*	OAL	AF
Inch	109.0	86.5	129.6	200.5	43.1
Inch	132.5	110.0	153.1	224.0	43.1
Inch	150.0	127.5	170.6	241.5	43.1
Inch	176.0	153.5	196.6	267.5	43.1

^{*} Effective CA & CE are CA & CE less BOC

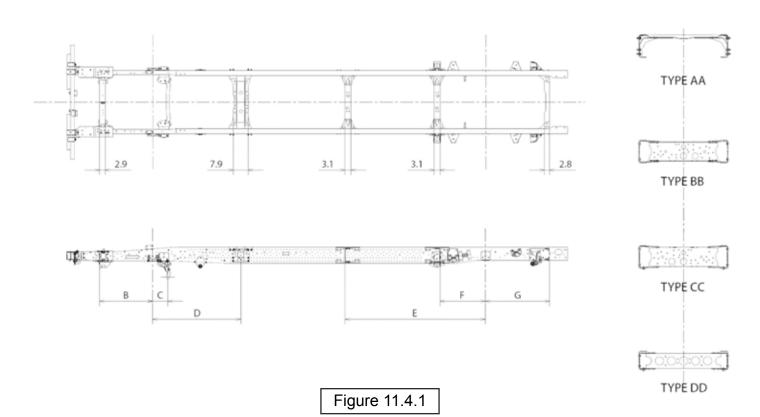
Dimension Constants:

Dillicit	310110011	Julii.	
Code	Inches	Code	Inches
AH	7.5	BW	833
AW	65.6	CW	65
BA	48.4	FW	33.5
BBC	70.7	ОН	92.4
BOC	7.7	OW	81.3
FH	33.0		

Vehicle Weight Limits:

GVWR Designed Maximum 16,000 lbs.
GAWR, Front 6,660 lbs.
GAWR, Rear 11,020 lbs.

Technical Notes:


Chassis Curb Weight reflects standard equipment and fuel but no driver or payload.

Maximum Payload Weight is the allowed maximum for equipment, body, payload and driver and is calculated by subtracting chassis curb weight from the GVWR.

	Weights for Options				
RPO (1)	Option Description	Front / Rear Lbs.			
NPV	Cross rail horizontal DPF/SCR with vertical exhaust (8)	100 / 100			
9D2	Speed Limited to 58 MPH	0/0			
9C2	Speed Limited to 65 MPH	0/0			
9E2	Speed Limited to 68 MPH	0/0			
ATG	Keyless entry	3/0			
9B9	Speed Limited to 70 MPH	0/0			
AJG	Suspension seat	18 / 0			
KO5	Block Heater (cord)	1/0			
KPG	Locking DEF tank cap	0/0			
UIZ	AM/FM/CD Radio with Ax input/USB port and Bluetooth	0/0			
KQJ	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0			
DB6	Heated dual remote control mirrors (15" head)	3/0			
G7M	Air Deflector roof mounted (not available in Crew Cab)	64 / 0			
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer	19 / 0			
KPK	Engine Oil Pan Heater (120v 300w)	2/0			
KPJ	Engine emergency shutdown system HWT, LWL, LOP (4)	0/0			
NLX	33 Gallon Additional Diesel Fuel Tank mounted on LH side 150, 176 wb, std. cab	(7)			
РТО	PTO Enable Switch and Engine Idle Up Switch recommended for PTO and Idle applications only (2)	1/0			
DB8	Heated Mirrors	1/0			
TBD	Mirror Bracket for 102" wide body	1/0			
9W8	Seat Covers Standard Cab (9)	6/0			
IX2	Rear Body Dome Lamp Switch (6)	1/0			
UL5	Delete Standard AM/FM/CD Radio	3/0			
KQN	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0			
UZF	Back up alarm	0/2			
V22	Chrome Grille	1/0			
CEO		/ 5			
SEO (1)	Option Description	Front / Rear Lbs.			
00	Standard model specifications	w/o power windows and power door locks			
04	Standard model specifications with power windows and power door locks	Standard chassis weight includes these features			
54	In rail fuel tank with power windows, power door locks and air conditioning	80 / 0			
64	In rail fuel tank with power windows, power door locks, air conditioning and LSD (3)	80 / 15			
74	Side mounted fuel tank w/power windows, power door locks and air conditioning (5)	215 / 124			
84	Side mounted fuel tank w/power windows, power door locks, air conditioning and LSD (3) (5)	215 / 109			

HACE 11.4

Frame and Crossmember Specifications

Wheelbase	Frame	Crossmember Type/Location									
	Thickness	В	С)		E		F		3
109	0.24	28.3	8.2	AA	46.5		-	CC	24.2	DD	33.8
132.5	0.24	28.3	8.2	AA	46.5	BB	57.5	CC	24.2	DD	33.8
150	0.24	28.3	8.2	AA	46.5	BB	57.9	CC	24.2	DD	33.8
176	0.24	28.3	8.2	AA	46.5	BB	74.4	CC	24.2	DD	33.8

Figure 11.4.2

11.5

Frame Chart

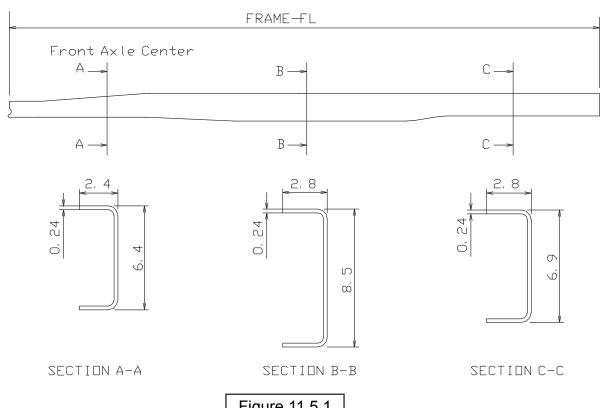


Figure 11.5.1

Wheelbase	Frame FL	Frame Thickness
109.0	182.5	0.24
132.5	206.1	0.24
150.0	223.8	0.24
176.0	249.8	0.24

Figure 11.5.2

4500XD Diesel Standard Cab - Top View

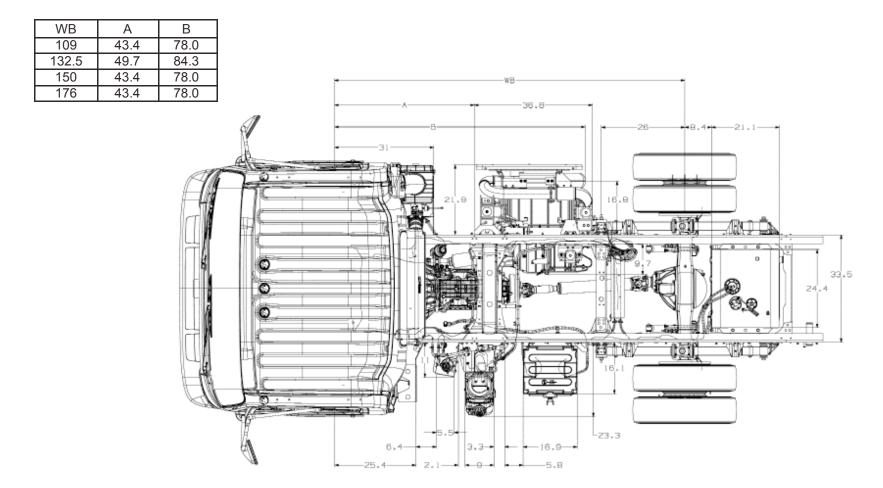


Figure 11.6.1

4500XD Diesel Standard Cab - Left Side View

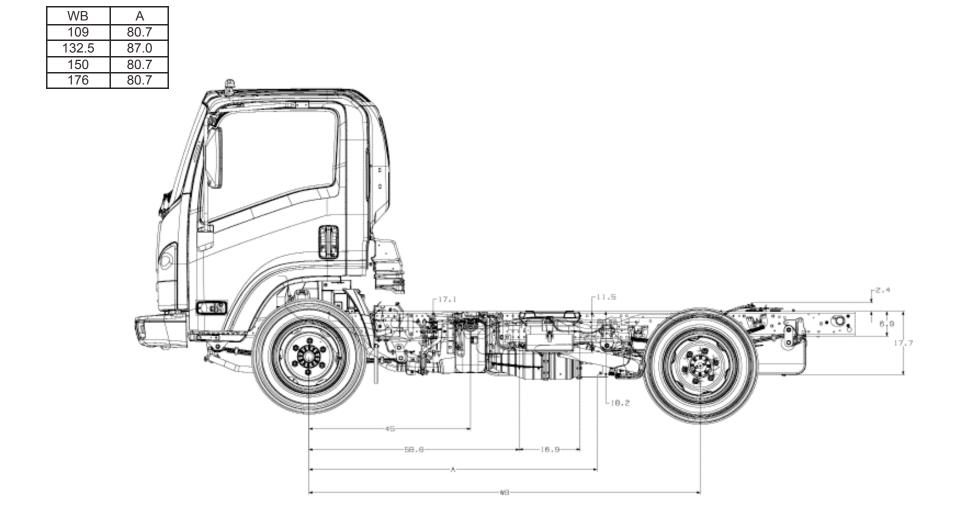


Figure 11.7.1

4500XD Diesel Standard Cab - Right Side View

WB	Α
109	44.0
132.5	50.3
150	44.0
176	44.0

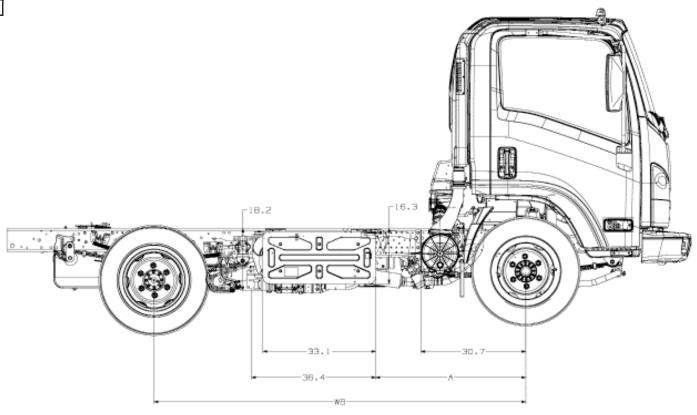
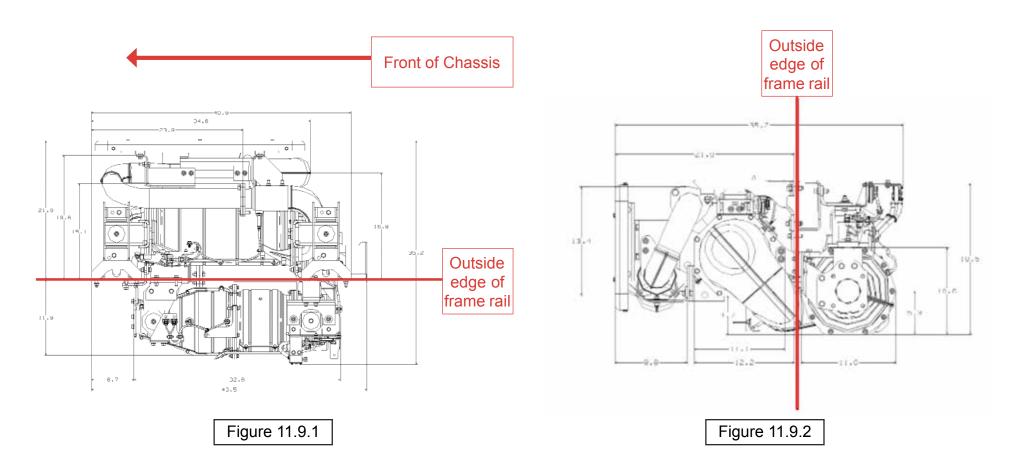



Figure 11.8.1

SCR / DPF 4HK1-TC

⁸ 11.10

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 150 Wheelbase

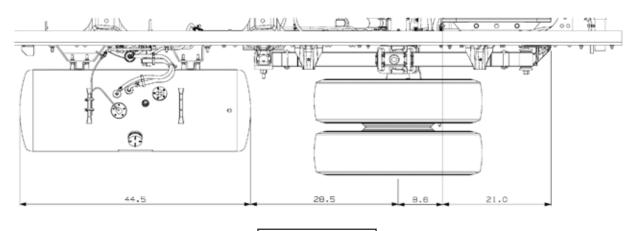


Figure 11.10.1

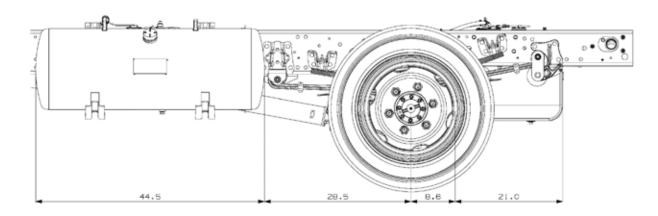


Figure 11.10.2

11.11

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase

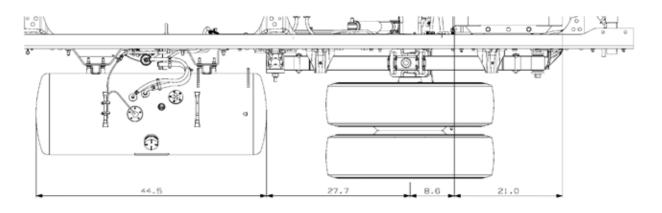


Figure 11.11.1

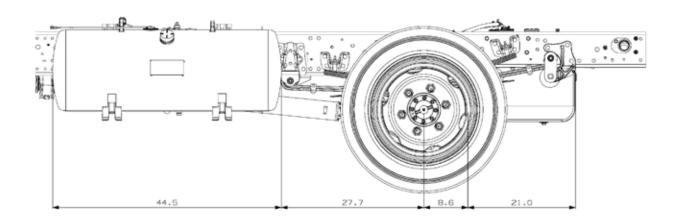


Figure 11.11.2

¹ 11.12

Option Side Fuel Tank in place of the Standard In Rail Fuel Tank T44003 ONLY Side View 176 Wheelbase

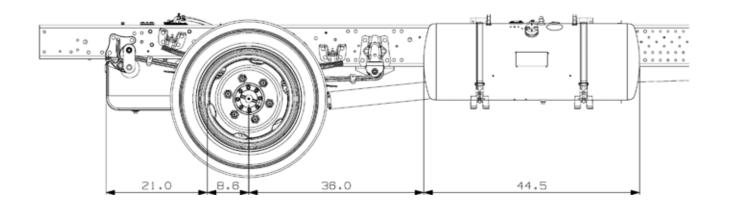


Figure 11.12.1

⁸ 11.13

Optional Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX (150 and 176 WB, LH rail only)

Optional Side Fuel Tank replacing standard In Rail Fuel Tank
(176 WB only, RH rail only)

Figure 11.13.1

Cab Tilt

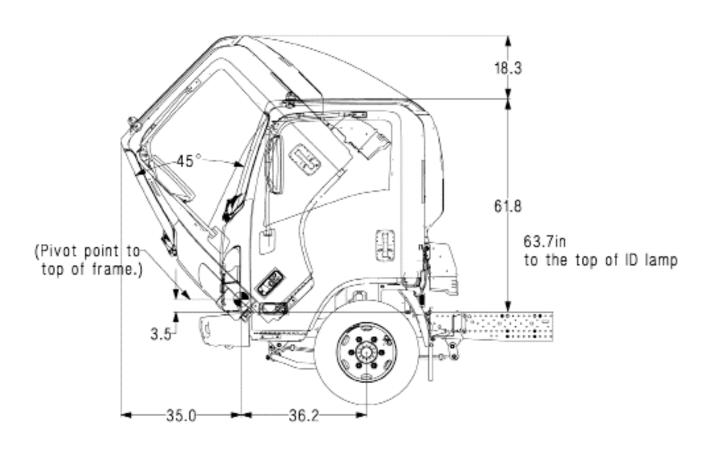
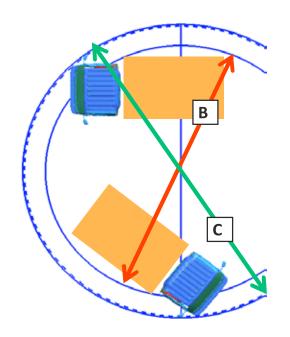


Figure 11.14.1


TURNING DIAMETERS

The LCF Diesel steering also features a 49.5 inside wheel cut angle. This, coupled with the integral power steering, makes the LCF Diesel an extremely maneuverable truck.

B=Minimum turning diameter curb to curb

C=Minimum turning diameter wall to wall

WB	B curb to curb	C (ft. wall to wall (ft.)
109.0	32.8	38.7
132.0	40.0	44.9
150.0	45.3	50.2
176.0	52.5	58.1

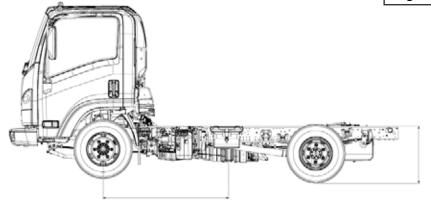

LCF Diesel Turning Circle Diagram

Figure 11.15.1

Center of Gravity

Horizontal and Vertical CG of Chassis									
		Н	Н						
WB	V	in frame	side						
		tank	tank						
110	23.5	38.4	N/A						
132.5	23.3	44.9	N/A						
150	23.3	49.9	N/A						
176	23.3	57.2	52.5						

Figure 11.16.1

The maximum vertical center of gravity specified below must not be exceeded at maximum GVWR and rated front and rear GAWR. The Center of Gravity (CG) maximum is 63" (1600 mm) above the ground. (LCF Cab Chassis and LCF Stripped Chassis)

Figure 11.16.2

NOTE: The Final Manufacturer must ensure that the combined vertical center of gravity of the chassis, body, and available payload at full GVW does not exceed the maximum vertical center of gravity outlined in the Chevrolet LCF Incomplete Vehicle Document and the GM Body Builders Guide.

The maximum dimensions for a body installed on the LCF chassis are 102 inches wide (outside*) by 91 inches high (inside). Any larger body applications must be approved by GM Upfitter Engineering. Contact us at GMUpfitter.com.

* With 102 inches wide mirror brackets installed in place of standard mirror brackets

Front Axle Chart

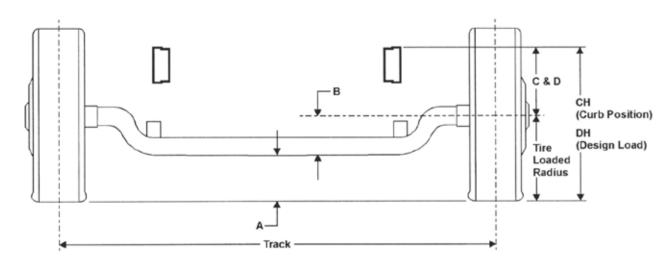
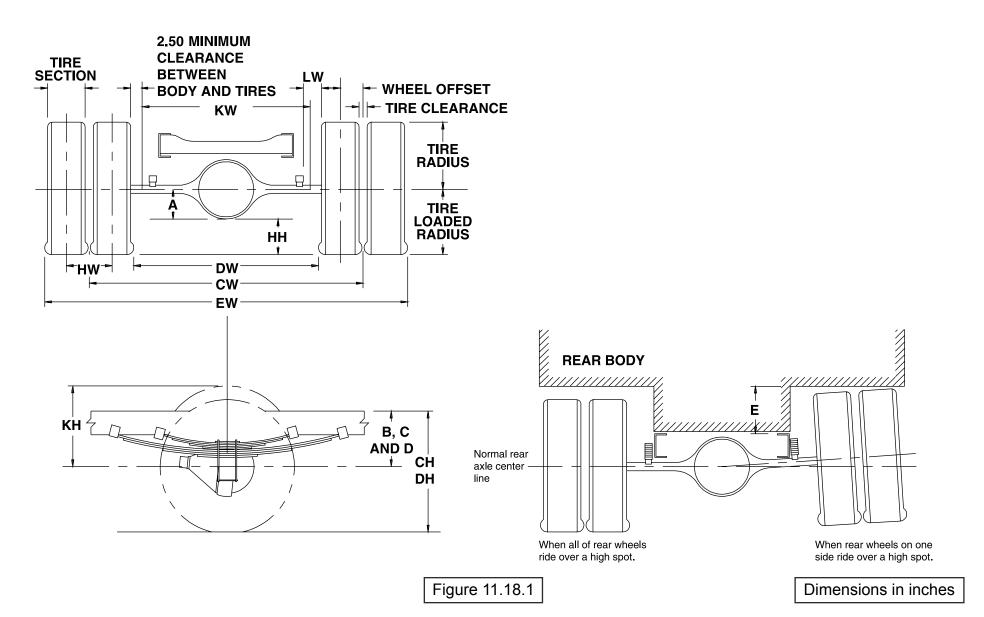


Figure 11.17.1

Formulas for calculating height dimensions:

A = Tire Loaded Radius - B

C = Centerline of Axle to Top of Frame Rail at Curb Position


D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	Α	В	С	D	СН	DH	Track	Tire Radius	
										Unload	Load
225/70R 19.5F	16,000 lbs.	6,630 lbs.	8.3	6.6	13	11.5	29	26.4	65.5	16	14.93

Figure 11.17.2

Rear Axle Chart

			Definitions
А	Centerline of axle to bottom of axle bowl.	DH	Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at design load.
В	Centerline of axle to top of frame rail at metal-to-metal position.	DW	Minimum distance between the inner surfaces of the rear tires.
С	Centerline of axle to top of frame rail at curb position.	EW	Maximum Rear Width:
			Overall width of the vehicle measured at the outermost surface of the rear tires.
D	Centerline of axle to top of frame rail at design load.		Rear Tire Clearance:
		НН	Minimum clearance between the rear axle and the ground-line.
	Rear Tire Clearance:		Dual Tire Spacing:
	Minimum clearance required for tires and chain measured from the		Distance between the centerlines of the minimum distance required for tire bounce
E	top of the frame at the vehicle centerline of the rear axle, when rear	HW	as measured from the centerline of the rear axle and the top of the rear tire when
	wheels on one side ride over a high spot.		one wheel rides over a high spot.
	Rear Frame Height:		Track Dual Rear Wheel Vehicle:
CH	Vertical distance between the normal top of frame rail and the	CW	Distance between the centerlines of the dual wheels measured at the ground-line.
	ground-line through the centerline of the rear axle at curb		
	position.		
	Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance	•	See Chart for values.

Figure 11.19.1

Formulas for Calculating Rear Width and Height Dimensions						
CW = Track	НН	= Tire loaded radius – A				
CH = Tire loaded radius + C	JH	= KH – B				
DH = Tire loaded radius + D	KH	= Tire radius + 3.00 inches				
DW = Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches				
EW = Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs				

NOTE: Track and overall width may vary with optional equipment.

Figure 11.19.2

Tire	GAWR	Track CW	Α	В	С	D	Е
225/70R 19.5F	11,020 lbs.	65.0	7.7	9.3	15.3	13.4	8.4

Figure 11.19.3

Dimensions in inches

⁸ 11.20

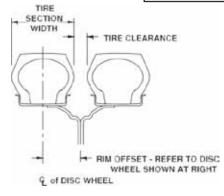
Tire and Disc Wheel Chart - 4500XD

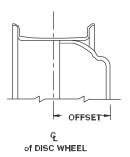
Tire

	Tire L	oad Limit and Co	ld Inflation Press	Maximum Tire Lo			
Tire Size	Single		Dual		Front	Rear	GVWR (Lbs.)
	Lbs.	PSI	Lbs.	PSI	2 Single	4 Dual]
225/70R 19.5F	3,315	85	3,115	90	6,900	12,980	16,000

Figure 11.20.1

			Tire R	adius				
Tire Size	GVWR (Lbs.)	Loa	ded	Unlo	aded	Tire Section	Tire Clearance	Design Rim
		Front	Rear	Front	Rear	Width		Width
225/70R 19.5F	16,000	14.93	14.98	16	16	8.7	1.3	6.0


Disc Wheel


Figure 11.20.2

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
19.5 x 6.00	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	325 ftlb. (440 N•m)	6.46	5.0	0.35	15º DC	Steel TOPY

*O.D. Wrench Sizes

Figure 11.20.3

Dimensions in inches

Figure 11.20.4

4500XD Suspension Deflection Charts

Front Suspension Load vs. Deflection (Per Axle) 16,000 lbs. GVWR

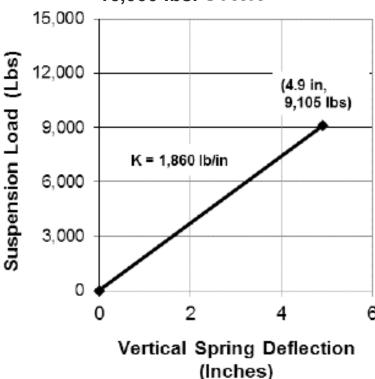


Figure 11.21.1

Rear Suspension Load vs. Deflection (Per Axle) 16,000 lbs. GVWR

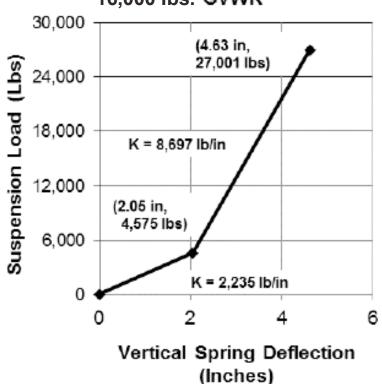
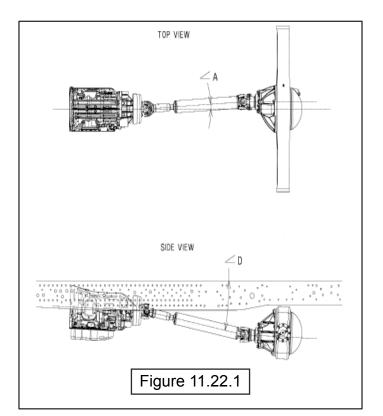
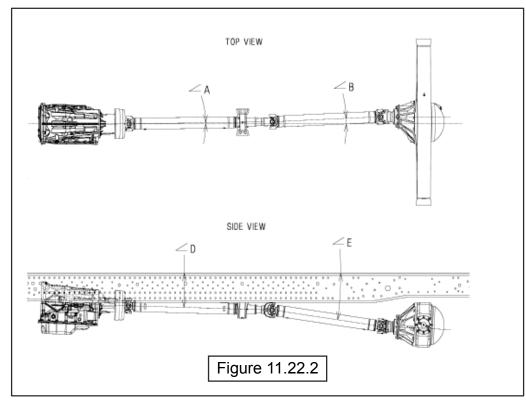




Figure 11.21.2

[₩] 11.22

Propeller Shaft

WheelBase	Top View		Side View				
(in.)	∠A	∠B	∠D	∠E	Trans	Rear Axle	
109	3.4°	-	11.3°	-	2.5°	2.7°	
132.5	0°	3.3°	5.3°	7.7°	2.5°	2.7°	
150	0°	3.2°	2.6°	8.0°	2.5°	2.7°	
176	0°	2.2°	2.1°	5.6°	2.5°	2.7°	

Figure 11.22.3

Notes: 1. Angles provided in table are relative to the frame angle. Please take this into consideration for service measurements.

2. Driveline angles are based on the chassis curb weight which includes standard equipment, fuel but no driver, body, or payload.

Propeller Shaft

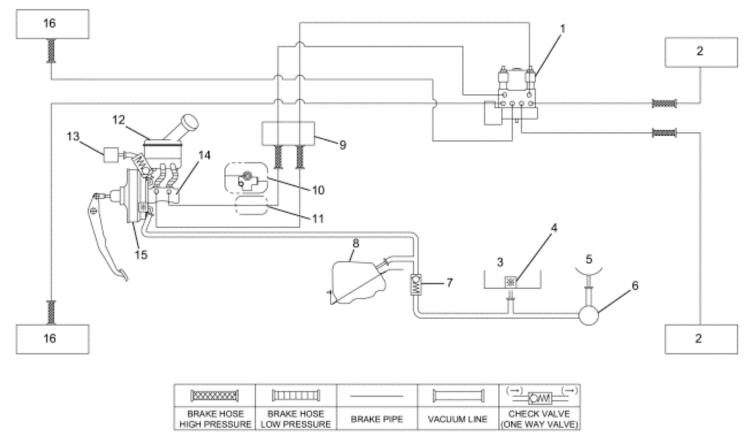
Trans. Type		6 Automatic. Tra	nsmission	
Wheelbase	109	132.5	150	176
No. of Shafts	1	2	2	2
Shaft #1 O.D.	3.54	3.54	3.54	3.54
Thickness	0.126	0.126	0.126	0.126
Length	35.7	22.91	40.24	49.69
Туре	А	В	В	В
Shaft #2 O.D.	N/A	3.54	3.54	3.54
Thickness	N/A	0.126	0.126	0.126
Length	N/A	36.16	36.53	52.93
Туре	N/A	С	С	С
Shaft #3 O.D.	N/A	N/A	N/A	N/A
Thickness	N/A	N/A	N/A	N/A
Length	N/A	N/A	N/A	N/A
Туре	N/A	N/A	N/A	N/A

Figure 11.23.1

Туре	Description	Illustration
Туре А	1st shaft in 1-piece driveline	
Туре В	1st shaft in 2-piece driveline	
Type C	2nd shaft in 2-piece driveline	

Figure 11.23.2

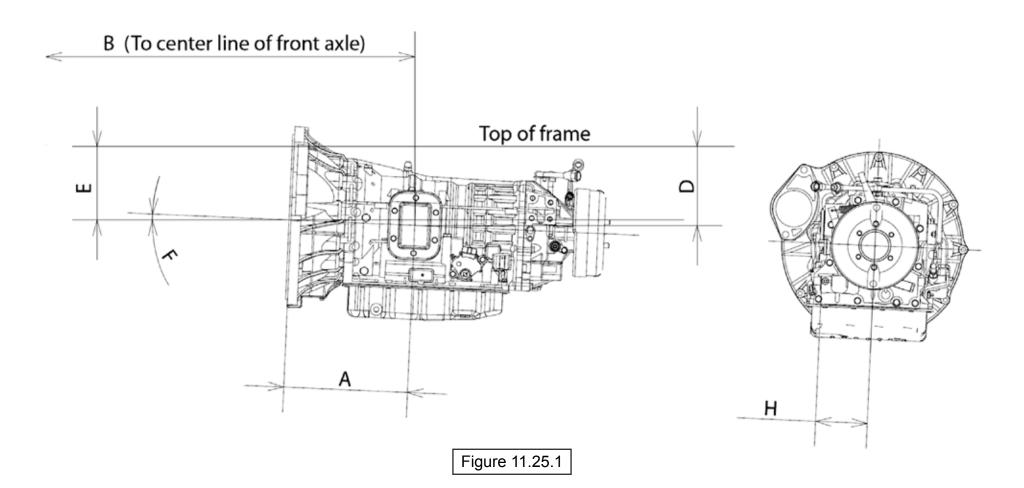
Dimensions in inches


Brake System Diagram 16,000 GVW

Vacuum Over Hydraulic

Please refer to Introduction Section of book for antilock system cautions and wheelbase modification requirements.

Legend for 3500, 3500HD, 4500, 4500HD, 4500XD Brake System


- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Vacuum Pump
- (4) Check Valve
- (5) Exhaust Brake Valve
- (6) Magnetic Valve
- (7) Check Valve (One-way Valve)
- (8) Vacuum Tank
- (9) 4-Way Connector
- (10) With Metering Valve
- (11) W/O Metering Valve
- (12) Brake Fluid Reservoir
- (13) Electric Vacuum Pump
- (14) Master Cylinder
- (15) Vacuum Booster (Servo Unit)
- (16) Front Wheel Cylinder

LNWC5AMF000201

Figure 11.24.1

PTO Location, Drive Gear and Opening Information

С Ε **PTO Drive Gear** Pitch Trans. Opening Bolt D F Ratio of PTO Drv. No. of Helix Max. Output Torque Location Pattern Location Gear Spd. to Eng. Spd. Teeth Angle 12.35 0 7.85 7.31 2.50 PTO Gear 69 N/A 134 lbs.-ft. @ 1,700 RPM Aisin 465 Left (Dr2) 36.89 5.16 1:1 with turbine

Figure 11.25.2

Opening Diagram

Aisin A460 Automatic Torque Converter Lock Up Function

In either the Stationary Preset PTO Mode or Stationary Variable PTO Mode, when engine rpm exceeds 1200 RPM, the torque converter will lock up. The engine rpm can not be modified and the lockup function cannot be turned off. Please not that with PTO applications that operate around 1200 RPM, the transmission software holds the torque converter in lockup until engine speed falls below 1100 RPM.

The lock up function will cancel if the transmission shift lever is moved from the park or neutral positions which will remove the transmission from the stationary mode.

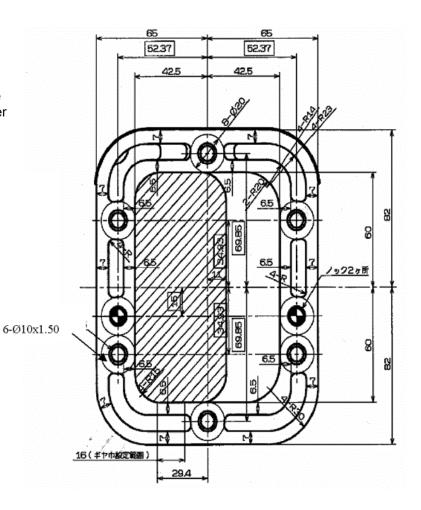


Figure 11.26.1

Additional PTO Functions

For certain applications the Automatic regeneration function can be inhibited (Example Airport Ground Support vehicles).

For certain applications the Automatic regeneration function can be enabled in the PTO stationary mode (Example Lawn care and carpet cleaning).

For certain applications the Automatic regeneration function can be enabled in the PTO mobile mode (Example Line painting).

Please refer to the PTO section of the BBG (section 17) for further details.

[₩] 11.27

In-Frame Diesel Fuel Fill

Installation Instructions

- 1. Disconnect battery.
- 2. Loosen hose from the tie downs. Remove caps from plate on rail.
- 3. Install hoses onto the plate.
- 4. Extend hose out from the driver side of the rail to body rail.
- 5. The filler neck must be mounted to allow the fill plate bracket to be parallel to the frame horizontal.
- 6. Cover with protector wrap and secure with tie wraps.
- 7. Filler hose is set for 102 inches outside width body.
- 8. Filler neck (dimension A) must be between 6.85 inches and 8.5 inches above frame.
- 9. Secure the filler plate to the bottom of the body and check for leaks.
- 10. Ensure that fill hose does not sag, creating an area where the fuel could pool in the fill hose.
- 11. Reconnect battery.

Rear View Fuel Fill

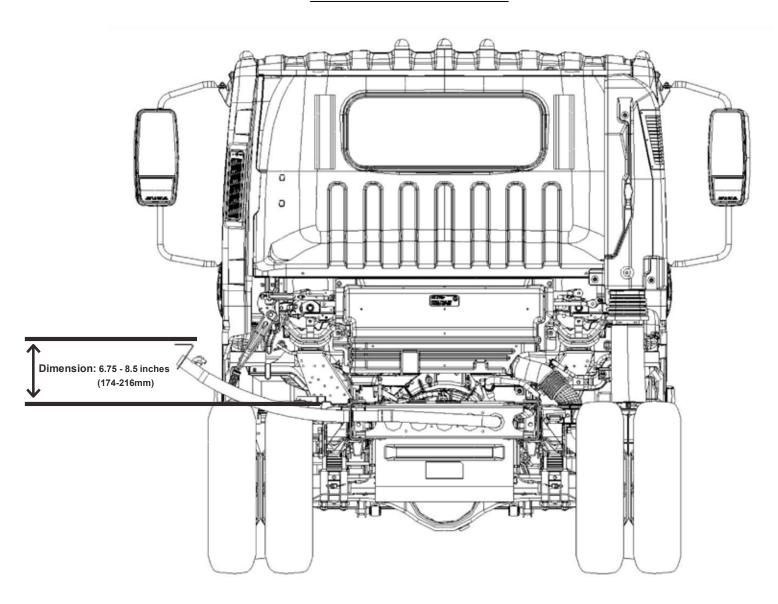
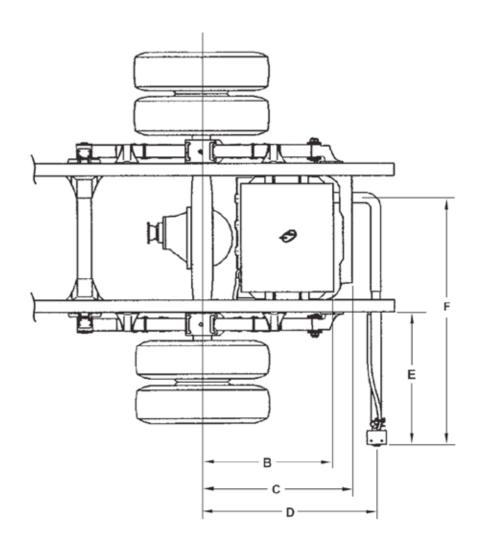



Figure 11.28.1

⁸ 11.29

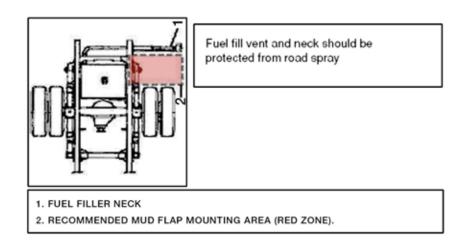
Top View Fuel Fill

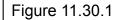
Dimensions:

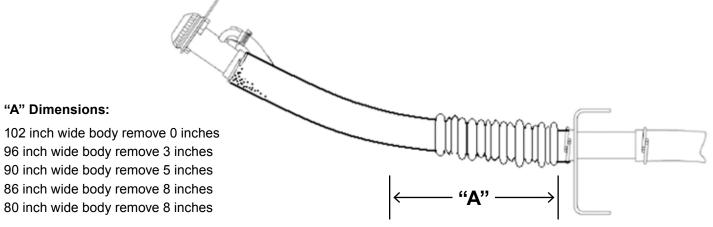
B = 29.75 inches (756 mm)

C = 34.00 inches (863 mm)

D = 39.29 inches (998 mm)


E = 33.86 inches (860 mm)


F = 59.60 inches (1,514 mm)


Figure 11.29.1

"A" Dimensions:

Hose Modification for Various Width Bodies and Fuel Fill Vent Protection

NOTE: Shorten hose by "A Dimension" based on chart at left.

Figure 11.30.2

Ultra Low Sulfur Diesel Label

Per EPA Title 40, Part 86, 86:007—35(c), The decal illustrated below must be installed on the vehicle. The decal is included in the fuel fill parts box.

> Ultra Low Sulfur Diesel Fuel Only

N' utiliser que du carburant diesel a teneur ultra-faible en soufre

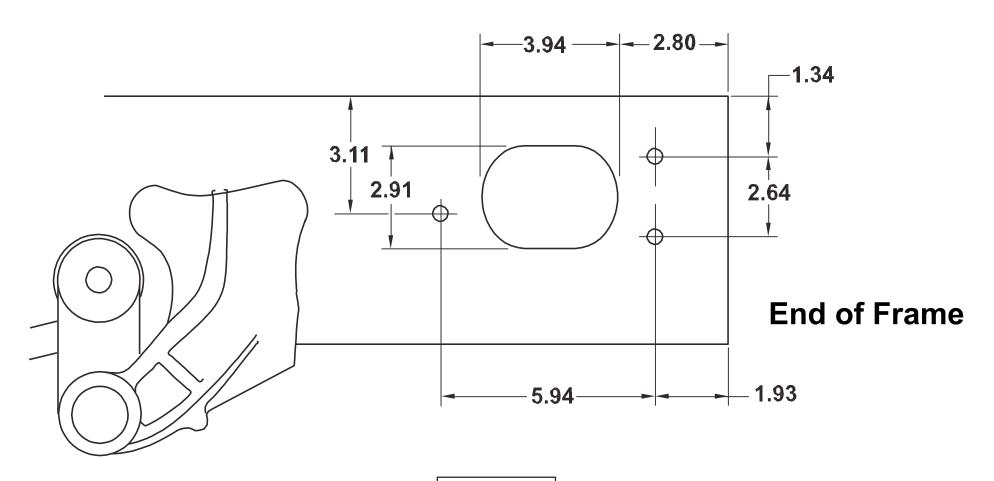
INSTRUCTIONS FOR DECAL PLACEMENT:

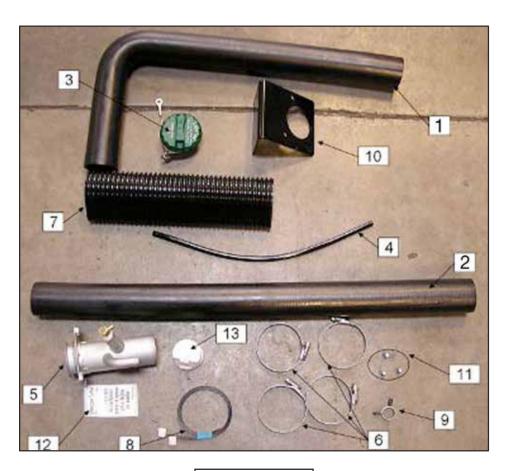
- 1. The decal must be placed as close as possible to the fuel inlet and be clearly visible.
- 2. The decal should be placed above or to the side of the fuel cap to avoid corrosion by possible contact with fuel.
- 3. The decal may be placed on aerodynamic fairings, bodies, etc. as long as the decal is clearly visible and in close proximity to the fuel inlet.
- 4. For installed bodies that have a fuel door, the decal should be placed above or to the side of the fuel door.

Thoroughly clean the area of all grease, dirt, etc. before application of the decal. Apply the decal at room temperature, 65° to 75° F.

Figure 11.31.1

Through the Rail Fuel Fill Frame Hole




Figure 11.32.1

Dimensions in inches

4500XD Diesel Fuel Filler Kit Instructions

Please review these instructions prior to installation of the fuel filler kit.

Parts Kit: There is a parts kit for the Chevrolet LCF diesel products. Fuel filler kit shown below is used for 14,500 lb and higher GVWR chassis (3500HD, 4500HD, 4500XD, 5500HD, 5500XD). Parts list is shown in *Figure 33.33.2*. Parts photos are shown in *Figure 11.33.1*.

Figure 11.33.1	Figur	e 11	.33.1
----------------	-------	------	-------

	FUEL FILLER KIT					
ITEM #	PART NAME	PART#	QTY			
1	HOSE: FUEL FILLER NECK	**	1			
2	HOSE:FUELFILLER	**	1			
3	CAP: FILLER	**	1			
4	HOSE: ROLL-OVER VALVE	**	1			
5	NECK ASM: FUEL FILLER	**	1			
6	CLIP: JOINT	**	4			
7	PROTECTOR: FILLER HOSE	**	1			
8	CLIP: BAND, HOSE FIXING	**	2			
9	CLIP: RUBBER, HOSE	**	1			
10	BRACKET: FILLER NECK	**	1			
11	SCREW:FILLERNECK	**	3			
12	CAUTION PLATE	**	1			
13	SHUTTER:FUELTANK	**	1			

^{**} See Dealer for all part numbers.

Figure 11.33.2

Installation Instructions and Considerations

The fuel tank shutter valve (13) is meant to improve fuel splash-back performance of the fuel system. This valve (13) is located on the inlet (outboard side) of the fuel filler neck bulkhead assemble that is bolted to the left hand frame rail as shown in *Figure 11.34.1*. This plastic valve snaps into place in the inlet of the frame mounted fuel pipe. The valve should be installed so that the plastic clip is at the top of the valve, so that the flap door opens up, as shown in *Figure 11.34.2*.

Figure 11.34.1

The fuel filler hose should be installed flush against the tank. The clamp should be installed between 1/16" and 3/8" from the tank. This is shown in *Figure 11.34.3* to the right.

Figure 11.34.2

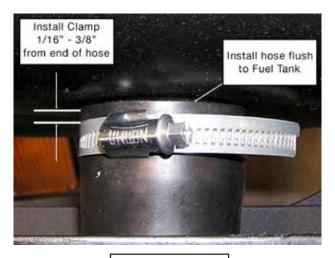
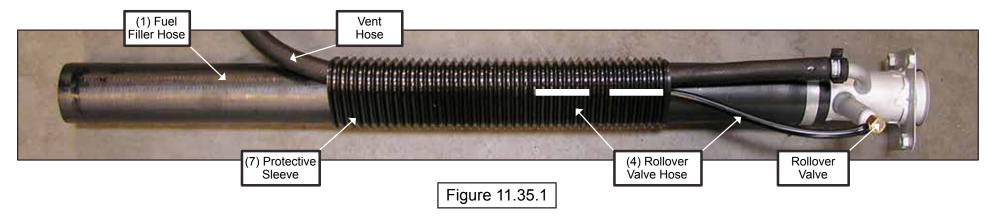



Figure 11.34.3

Roll-Over Valve Tubing

The roll-over valve has a hose attachment that will make this valve less sensitive to water intrusion. In order for the valve to work properly, it is critical that the hose be installed to the rollover valve. The proper assembly of the outer hose is shown in *Figure 11.35.1*.

Filler Neck Installation

The fuel filler neck (5) must be installed with the proper orientation on the body. The neck should be installed with the roll-over valve pointing upward, with the bottom edge of the neck oriented parallel to the ground, plus 33 to minus 7 degrees. See *Figure 11.35.2* for the proper orientation.

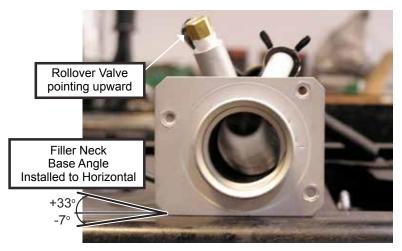


Figure 11.35.2

5500HD Diesel Specifications

Model	5500HD
GVWR	17,950 lbs.
WB	109 in., 132.5 in., 150 in., 176 in., 200 in.*
Engine	Isuzu 4-cylinder, in-line 4-cycle, turbocharged, intercooled, direct injection diesel.
Model/Displacement	4HK1-TC/317 CID (5.19 liters)
HP (Gross)	215HP/2500 RPM w/Automatic Transmission
Torque (Gross)	452 lb ft torque/1850 RPM w/ Automatic Transmission
Equipment	Dry element air cleaner with vertical intake; 2 rows 564 square in². radiator; 7 blade 20.1 in diameter fan with viscous drive. Cold weather starting device and an oil cooler. Engine oil level check. Engine warning system with audible warning for low oil pressure, high coolant temperature, and low coolant level. Engine cruise control function. Rear engine cover.
Transmission	Aisin A465 6 speed automatic transmission with fifth and sixth gear overdrive with lock up in 2nd, 3rd, 4th, 5th and 6th, PTO capability with automatic torque converter lockup in stationary PTO mode.
Steering	Integral power steering 18.8-20.9:1 ratio. Tilt and telescoping steering column.
Front Axle	Reverse Elliot 1" -Beam rated at 6,830 lbs.
Suspension	Semi-elliptical steel alloy tapered leaf springs with stabilizer bar and shock absorbers.
GAWR	6,830 lbs.
Rear Axle	Full floating single speed with hypoid gearing rated at 14,550 lbs.
Suspension	Semi-elliptical steel alloy multi-leaf springs and shock absorbers.
GAŴR	12,980 lbs.
Wheels	19.5x6.0-K 6 hole disc wheels, painted white.
Tires	225/70R-19.5E (12 pr) LRR (Low Rolling Resistance) tubeless steel belted radials, all season tread front and rear.
Brakes	Dual circuit power assisted hydraulic service brakes with EBD (Electronic Brake Distribution) system for load proportioning of the brake system front disc and self-adjust outboard mounted drum rear. The parking brake is mechanical, cable actuated, internal expanding drum type, transmission mounted. The exhaust brake is standard and is vacuum operated. 4 channel antilock brake system.
Fuel Tank	30 gal. rectangular steel fuel tank mounted in frame rail behind rear axle. Fuel water separator with indicator light.
Frame	Ladder type channel section straight frame rail 33.5 in wide through the total length of the frame. Yield strength 44,000 psi, section modulus 7.20 in 3. RBM 316,800.
Cab	All steel low cab forward, BBC 70.9 in, 450 mechanical tilt with torsion assist.
Equipment	TRICOT breathabke cloth covered high back driver's seat with two occupant passenger seat. Dual cab mounted exterior mirrors with integral convex mirror. Tilt and telescoping steering column. Power windows and door locks, floor mats, tinted glass.
Electrical	12 Volt, negative ground, dual maintenance free batteries, 750 CCA each, 140 Amp alternator with integral regulator.
Options	See last page for options
	NOTE: These selected specifications are subject to change without notice.

Vehicle Weights, Dimensions and Ratings

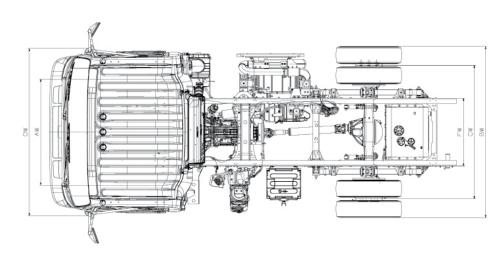


Figure 12.2.1

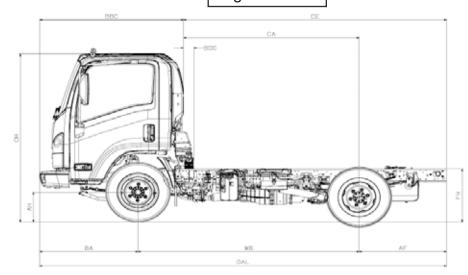


Figure 12.2.2

In-Frame Tank

17,950 lb. GVWR Automatic Transmission Model

Chassis Curb and Maximum Payload Weights

Model	RPO	WB	Unit	Front	Rear	Total	Payload
T51003	EB4	109.0 in	lb.	4132	2357	6489	11461
T52003	FNJ	132.5 in	lb.	4221	2361	6582	11368
T53003	FWH	150.0 in	lb.	4286	2342	6628	11322
T54003	FNW	176.0 in	lb.	4324	2362	6686	11264
T55003	EM2	200.0 in	lb.	4487	2524	7011	10939

Side Mounted Tank

17,950 lb. GVWR Automatic Transmission Model

Chassis Curb and Maximum Payload Weights

Model	RPO	WB	Unit	Front	Rear	Total	Payload
T54003	FNW	176.0 in	lb.	4458	2238	6696	11254

Vertical Exhaust Option Dimensions:

Variable Chassis Dimensions:

Unit	WB	EFF CA*	EFF CE*	OAL	AF
Inch	109.0	62.5	105.6	200.5	43.1
Inch	132.5	86.0	153.1	224.0	43.1
Inch	150.0	103.5	146.6	241.5	43.1
Inch	176.0	129.5	172.6	267.5	43.1

^{*} Effective CA & CE listed are standard CA or CE

less vertical exhaust BOC of 24 inches.

Vertical Exhaust BOC = 24 inches

Variable Chassis Dimensions:

Unit	WB	CA*	CE*	OAL	AF
Inch	109.0	86.5	129.6	200.5	43.1
Inch	132.5	110.0	153.1	224.0	43.1
Inch	150.0	127.5	170.6	241.5	43.1
Inch	176.0	153.5	196.6	267.5	43.1
Inch	200.0	177.5	220.6	291.5	43.1

^{*} Effective CA &CE are CA & CE less BOC

Dimension Constants:

Code Inches Code Inches

AH	7.5	BW	83.3
AW	65.6	CW	65
BA	48.4	FW	33.5
BBC	70.7	ОН	92.4
BOC	7.7	OW	81.3
FH	33.0		

[₩] 12.3

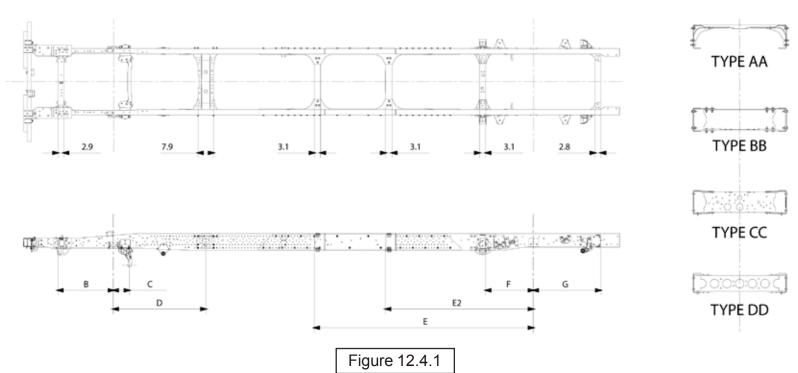
Vehicle Weight Limits

Vehicle Weight Limits:

GVWR Designed Maximum 17,950 lbs.

GAWR, Front 6,830 lbs.
GAWR, Rear 12,980 lbs.

Technical Notes:

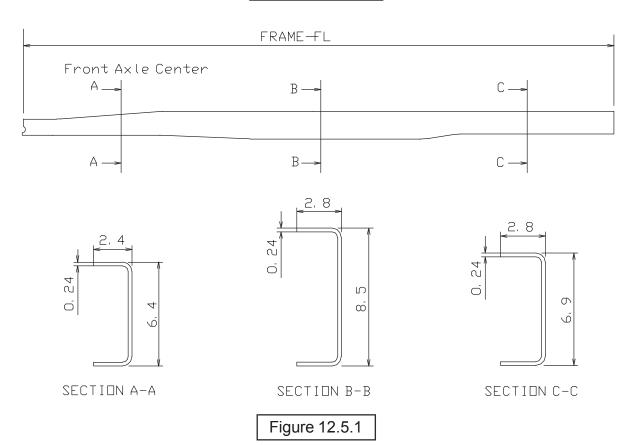

Chassis Curb Weight reflects standard equipment and fuel but no driver or payload.

Maximum Payload Weight is the allowed maximum for equipment, body, payload and driver and is calculated by subtracting chassis curb weight from the GVWR.

	Weights for Options							
RPO (1)	Option Description	Front / Rear Lbs.						
NPV	Cross rail horizontal DPF/SCR with vertical exhaust (8)	100 / 100						
9D2	Speed Limited to 58 MPH	0/0						
9C2	Speed Limited to 65 MPH	0/0						
9E2	Speed Limited to 68 MPH	0/0						
ATG	Keyless entry	3/0						
9B9	Speed Limited to 70 MPH	0/0						
AJG	Suspension seat	18/0						
K05	Block Heater (cord) 1/0							
KPG	Locking DEF tank cap 0/0							
UIZ	AM/FM/CD Radio with Ax input/USB port and Bluetooth 0 / 0							
KQN	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown) 0 / 0							
DB6	Heated dual remote control mirrors (15" head) 3 / 0							
G7M	Air Deflector roof mounted (not available in Crew Cab)	64 / 0						
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer	19/0						
KPK	Engine Oil Pan Heater (120v 300w)	2/0						
KPJ	Engine emergency shutdown system HWT, LWL, LOP (4)	0/0						
NLX	33 Gallon Additional Diesel Fuel Tank mounted on LH side 150, 176 wb, std. cab	(7)						
PTO	PTO Enable Switch and Engine Idle Up Switch recommended for PTO and Idle applications only (2)	1/0						
DB8	Heated Mirrors	1/0						
TBD	Mirror Bracket for 102" wide body	1/0						
9W8	Seat Covers Standard Cab (9)	6/0						
IX2	Rear Body Dome Lamp Switch (6)	1/0						
UL5	Delete Standard AM/FM/CD Radio	3/0						
KQN	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0						
UZF	Back up alarm	0/2						
V22	Chrome Grille	1/0						

⁸ 12.4

Frame and Crossmember Specifications



Wheelbase	Frame		Crossmember Type/Location										
	Thickness	В	С	C D			E	Е	2	F	=	(3
109	0.24	28.3	7.9	AA	46.5		-		-	CC	24.2	DD	33.8
132.5	0.24	28.3	7.9	AA	46.5	BB	57.5		-	CC	24.2	DD	33.8
150	0.24	28.3	7.9	AA	46.5	BB	57.9		-		24.2	DD	33.8
176	0.24	28.3	7.9	AA	46.5	BB	74.4		-	CC	24.2	DD	33.8
200	0.24	28.3	7.9	AA	46.5	BB	98.4	BB	74.4	CC	24.2	DD	33.8

Figure 12.4.2

Note: Dimensions in inches

Frame Chart

Wheelbase Frame FL Frame Thickness 109.0 182.5 0.24 132.5 0.24 206.1 150.0 223.8 0.24 176.0 249.8 0.24 200.0 273.8

Figure 12.5.2

5500HD Diesel Standard Cab Top View

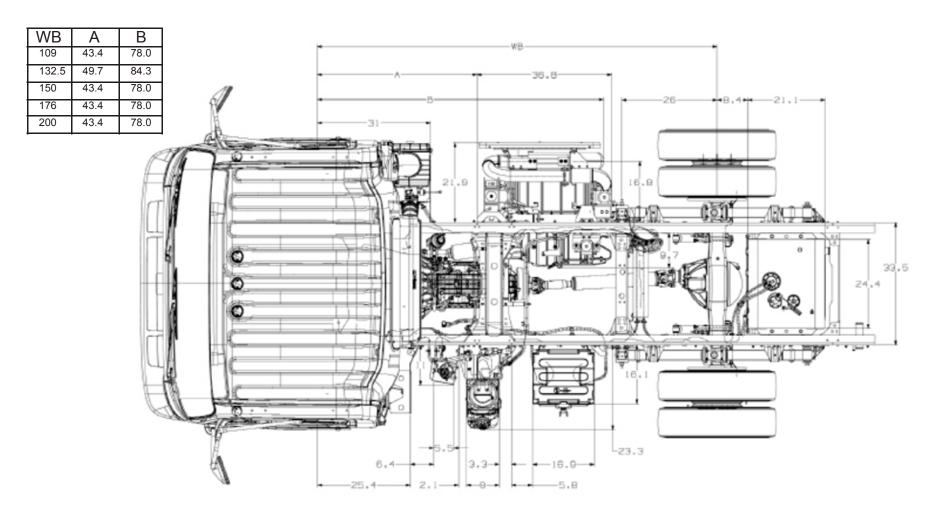


Figure 12.6.1

5500HD Diesel Standard Cab -Left Side View

WB	Α
109	80.7
132.5	87.0
150	80.7
176	80.7
200	80.7

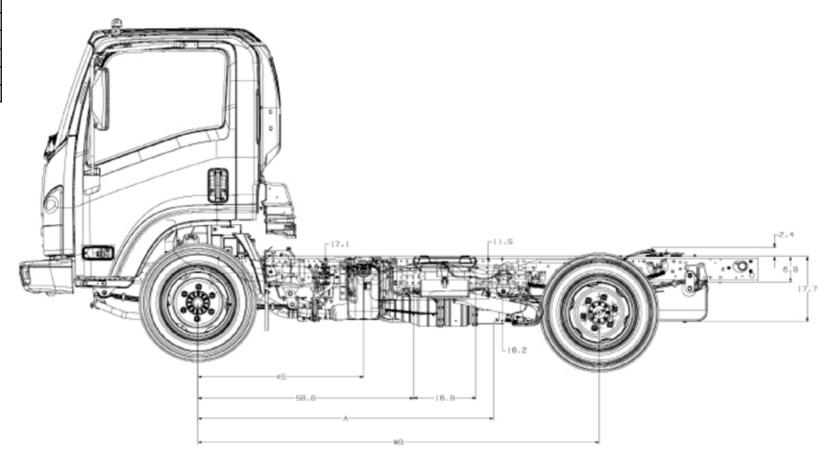


Figure 12.7.1

5500HD Diesel Standard Cab Right Side View

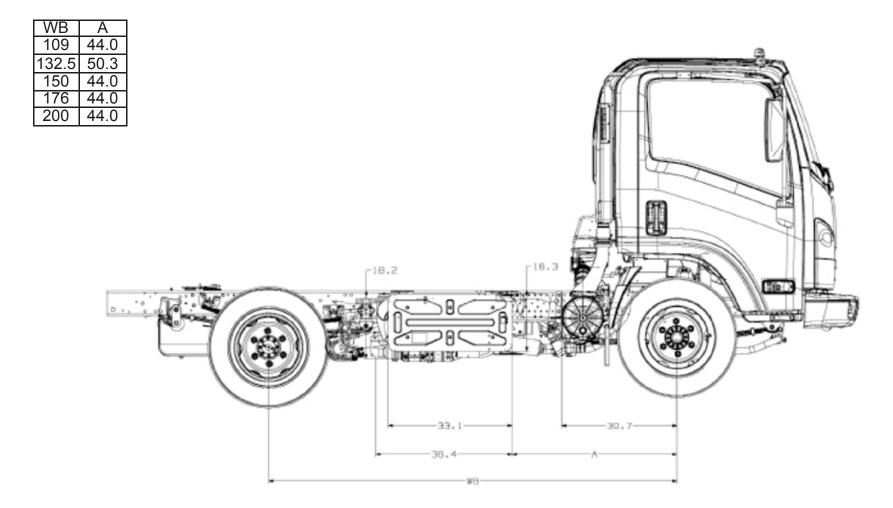
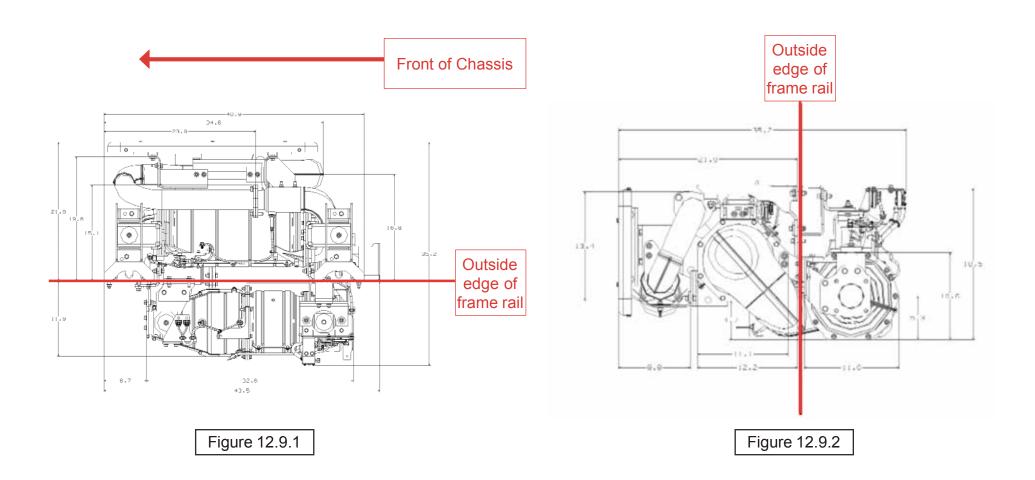



Figure 12.8.1

SCR / DPF 4HK1-TC

[₩] 12.10

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 150 Wheelbase

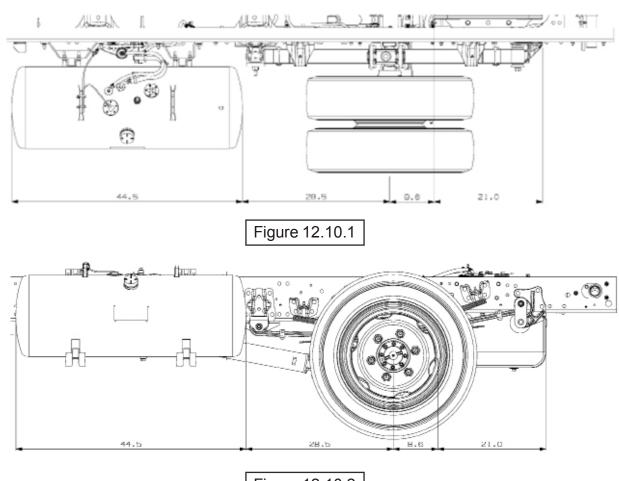


Figure 12.10.2

12.11

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX
Side View 176 Wheelbase

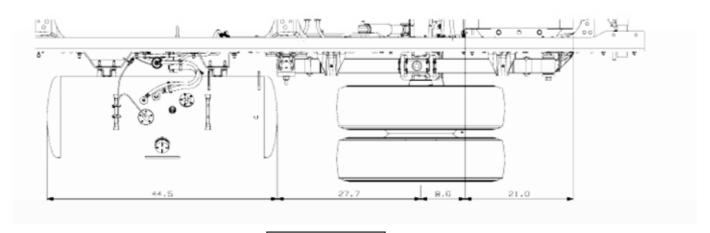
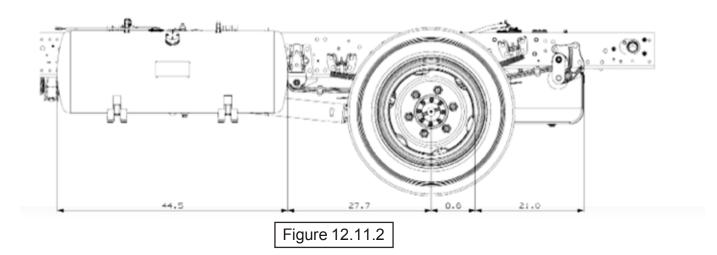



Figure 12.11.1

Option Side Fuel Tank in place of the Standard In Rail Fuel Tank

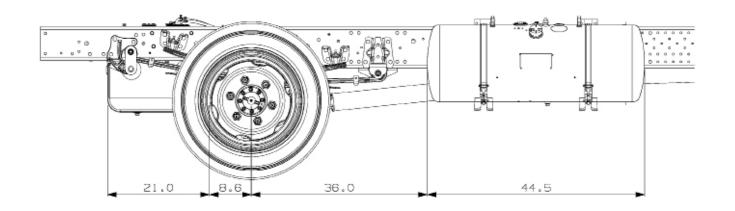


Figure 12.12.1

Optional Side Fuel Tank in addition to the Standard In Rail Fuel tank RPO NLX (150 and 176 wb LH rail only)

Optional Side Fuel Tank replacing standard In Rail Fuel tank (176 wb only RH rail only)

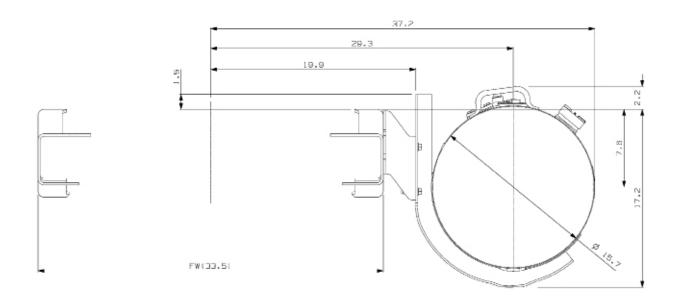


Figure 12.13.1

Cab Tilt

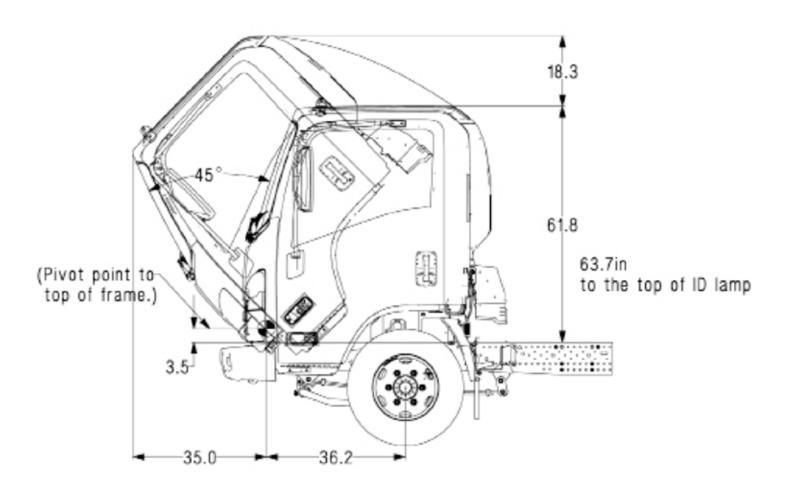
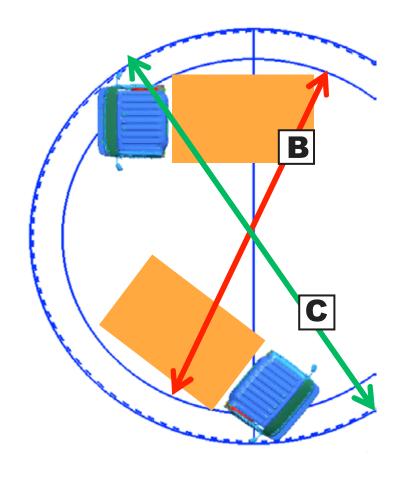


Figure 12.14.1

[₩] 12.15

Turning Diameters

TURNING DIAMETERS

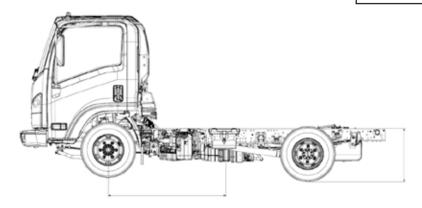

The LCF Series Diesel steering also features a 46.50 inside wheel cut angle. This, coupled with the integral power steering, makes the LCF Series Diesel an extremely maneuverable truck.

B=MINIMUM TURNING DIAMETER CURB TO CURB

C=MINIMUM TURNING DIAMETER WALL TO WALL

Turning Diameters (design value)

WB	В	C
	curb to curb	(ft. wall to wall (ft.)
109.0	32.8	38.7
132.0	40.0	44.9
150.0	45.3	50.2
176.0	52.5	58.1
200.0	61.0	67.2
212.0	66.0	73.0


Center of Gravity

Horizontal and Vertical CG of Chassis									
		Н	Н						
WB	V	in frame	side						
		tank	tank						
109	23.5	38.4	N/A						
132.5	23.3	44.9	N/A						
150	23.3	49.9	N/A						
176	23.3	57.2	52.5						
200	23.3	64.5	N/A						

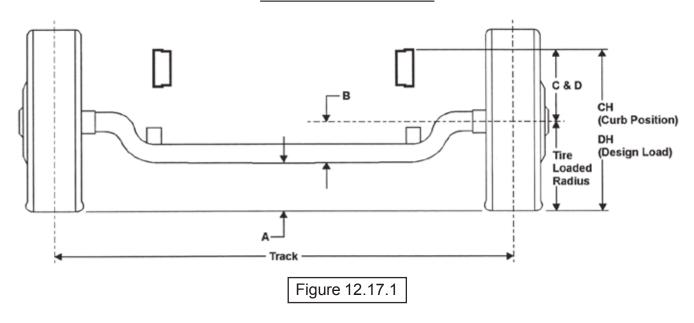
Center of Gravity

The center of gravity of the chassis cab.

Figure 12.16.1

The maximum vertical center of gravity specified be- low must not be exceeded at maximum GVWR and rated front and rear GAWR. The Center of Gravity (CG) maximum is 63" (1600 mm) above the ground. (LCF Cab Chassis and LCF Stripped Chassis).

Figure 12.16.2


NOTE: The Final Manufacturer must ensure that the combined vertical center of gravity of the chassis, body, and available payload at full GVW does not exceed the maximum vertical center of gravity outlined in the Chevrolet LCF Incomplete Vehicle Document and the GM Body Builders Guide.

The maximum dimensions for a body installed on the N Series chassis are 102 inches wide (outside*) by 91 inches high (inside). Any larger body applications must be approved by GM Upfitter Engineering. Contact us on gmupfitters.com.

* With 102 inches wide mirror brackets installed in place of standard mirror brackets

Note: Dimensions in inches

Front Axle Chart

Formulas for calculating height dimensions:

A = Tire Loaded Radius – B

C = Centerline of Axle to Top of Frame Rail at Curb Position
D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius
DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	Α	В	С	D	СН	DH	Track	Tire R	Radius
										Unload	Load
225/70R 19.5F	17,950 lbs.	6,830 lbs.	8.3	6.6	13	11.5	29	26.4	65.5	16	14.93

Figure 12.17.2

Rear Axle Chart

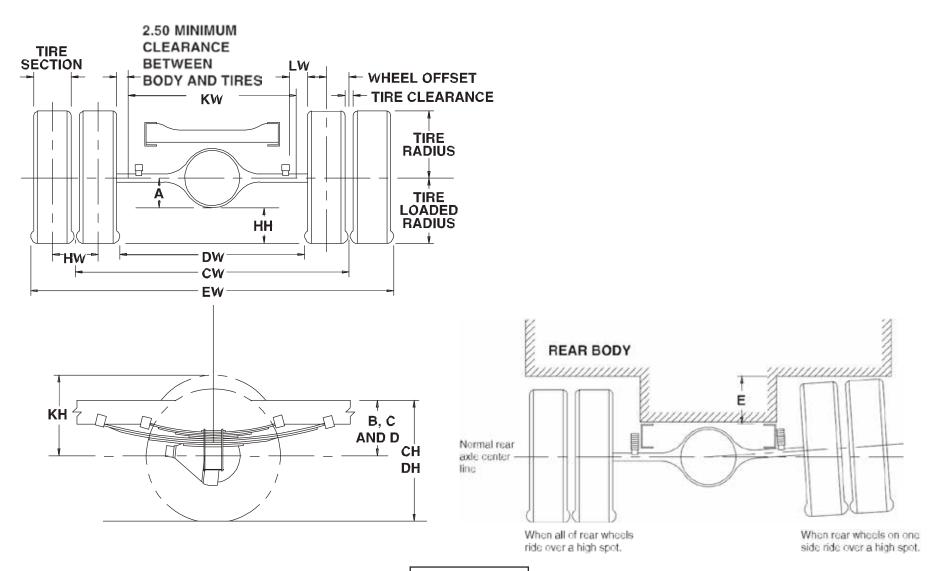


Figure 12.18.1

[₩] 12.19

Definitions

. Denintions								
		Rear Frame Height:						
Centerline of axle to bottom of axle bowl.	DH	Vertical distance between the normal top of frame rail and the ground-line						
		through the centerline of the rear axle at design load.						
Centerline of axle to top of frame rail at metal-to-metal position.	DW	Minimum distance between the inner surfaces of the rear tires.						
Centerline of axle to top of frame rail at curb position.	EW	Maximum Rear Width:						
		Overall width of the vehicle measured at the outermost surface of the rear tires.						
Centerline of axle to top of frame rail at design load.		Rear Tire Clearance:						
	НН	Minimum clearance between the rear axle and the ground-line.						
Rear Tire Clearance:		Dual Tire Spacing:						
Minimum clearance required for tires and chain measured from the		Distance between the centerlines of the minimum distance required for tire bounce						
top of the frame at the vehicle centerline of the rear axle, when rear	HW	as measured from the centerline of the rear axle and the top of the rear tire when						
wheels on one side ride over a high spot.		one wheel rides over a high spot.						
Rear Frame Height:		Track Dual Rear Wheel Vehicle:						
Vertical distance between the normal top of frame rail and the	CW	Distance between the centerlines of the dual wheels measured at the ground-line.						
ground-line through the centerline of the rear axle at curb								
position.								
Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance	'	See Chart for values.						
	Centerline of axle to bottom of axle bowl. Centerline of axle to top of frame rail at metal-to-metal position. Centerline of axle to top of frame rail at curb position. Centerline of axle to top of frame rail at design load. Rear Tire Clearance: Minimum clearance required for tires and chain measured from the top of the frame at the vehicle centerline of the rear axle, when rear wheels on one side ride over a high spot. Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at curb position.	Centerline of axle to bottom of axle bowl. Centerline of axle to top of frame rail at metal-to-metal position. Centerline of axle to top of frame rail at curb position. EW Centerline of axle to top of frame rail at design load. HH Rear Tire Clearance: Minimum clearance required for tires and chain measured from the top of the frame at the vehicle centerline of the rear axle, when rear wheels on one side ride over a high spot. Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at curb position.						

Figure 12.19.1

Formulas for Calculating Rear Width and Height Dimensions								
CW	= Track	НН	= Tire loaded radius – A					
СН	= Tire loaded radius + C	JH	= KH – B					
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches					
DW	= Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches					
ΕW	= Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs					

Figure 12.19.2

NOTE: Track and overall width may vary with optional equipment.

Tire	GAWR	Track CW	Α	В	С	D	E
225/70R 19.5F	12,980 lbs.	65.0	7.7	9.3	15.3	13.4	8.4

Figure 12.19.3

5500HD Suspension Deflection Charts

Front Suspension Load vs. Deflection (Per Axle) 17,950 lb GVWR

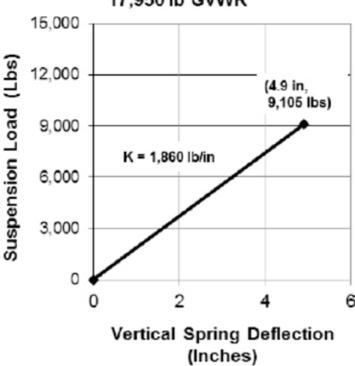


Figure 12.20.1

Rear Suspension Load vs. Deflection (Per Axle) 17.950 lb GVWR

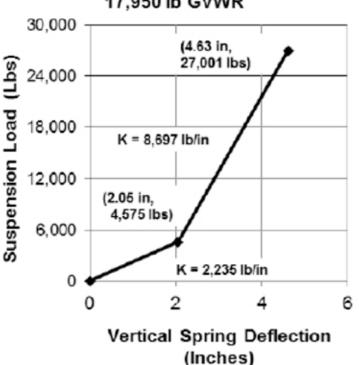


Figure 12.20.2

12.21

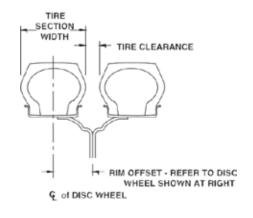
Tire and Disc Wheel Chart

Tire

	Tire L	oad Limit and Co	ld Inflation Press	ures	Maximum Tire Lo		
Tire Size	Sir	igle	Dual		Front	Rear	GVWR (Lbs.)
	Lbs.	PSI	Lbs.	PSI	2 Single	4 Dual	
225/70R 19.5F	3,450	90	3,245	90	7,280	13,660	17,950

Figure 12.21.1

		Tire Radius							
Tire Size GVWR (Lbs.)		Loa	ded	Unloaded		Tire Section	Tire Clearance	Design Rim	
		Front	Rear	Front	Rear	Width		Width	
225/70R 19.5F	17,950	14.91	14.96	16.00	16.00	8.7	1.3	6.0	


Figure 12.21.2

Disc Wheel

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
19.5 x 6.00 K	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	325 ftlb. (440 N•m)	6.46	5.0	0.35	5º DC	Steel TOPY

^{*}O.D. Wrench Sizes

Figure 12.21.3

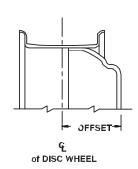
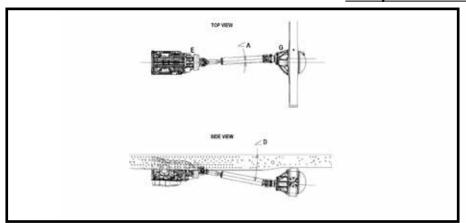



Figure 12.21.4

Note: Dimensions in inches

Revision: 11/30/2017

Propeller Shaft 5500HD

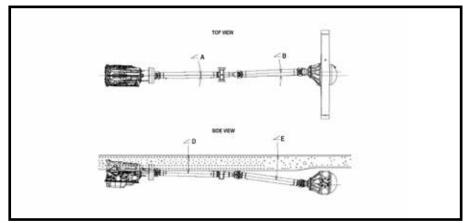


Figure 12.22.1

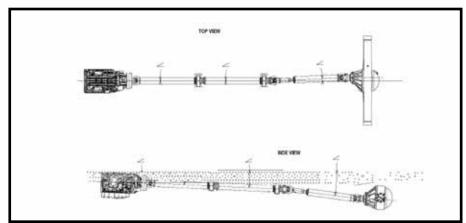


Figure 12.22.2

Figure 12.22.3

Wheelbase		Top View		Side View					
(in.)	∠A	∠B	∠C	∠D	∠E	∠F	Trans	Rear Axle	
109	3.4°	_	-	11.3°	-	-	2.5°	2.7°	
132.5	0°	3.3°	-	5.3°	7.7°	-	2.5°	2.7°	
150	0°	3.2°	-	2.6°	8.0°	-	2.5°	2.7°	
176	0°	2.2°	-	2.1°	5.6°	-	2.5°	2.7°	
200	0°	0°	2.2°	2.1°	0.0°	5.6°	2.5°	2.7°	

Notes: 1. Angles privuded in table are relative to the frame angle. Please take this into consideration for service measurements.

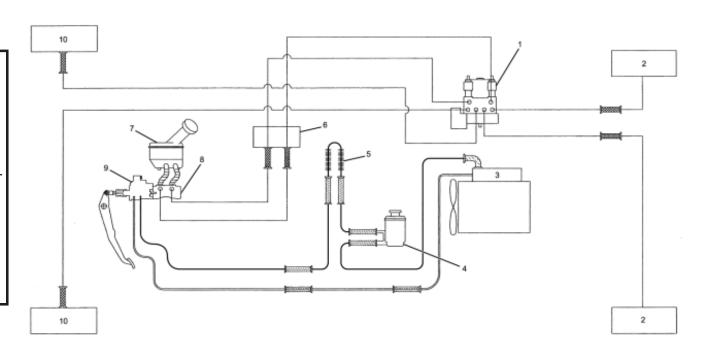
2. Driveline angles are based on the chassis curb weight which includes standard equipment, fuel but no driver, body, or payload.

Automatic Transmission

Trans. Type		6 Automatic. Trai	nsmission		
Wheelbase	109	132.5	150	176	200
No. of Shafts	1	2	2	2	3
Shaft #1 O.D.	3.54	3.54	3.54	3.54	3.54
Thickness	0.126	0.126	0.126	0.126	0.126
Length	35.7	22.91	40.24	49.69	49.69
Туре	A	В	В	В	В
Shaft #2 O.D.	N/A	3.54	3.54	3.54	3.54
Thickness	N/A	0.126	0.126	0.126	0.126
Length	N/A	36.16	36.53	52.93	24.00
Туре	N/A	С	С	С	В
Shaft #3 O.D.	N/A	N/A	N/A	N/A	3.54
Thickness	N/A	N/A	N/A	N/A	0.126
Length	N/A	N/A	N/A	N/A	52.93
Туре	N/A	N/A	N/A	N/A	С

Figure 12.23.1

Туре	Description	Illustration			
Туре А	1st shaft in 1-piece driveline				
Туре В	1st shaft in 2-piece driveline				
Туре С	2nd shaft in 2-piece driveline				

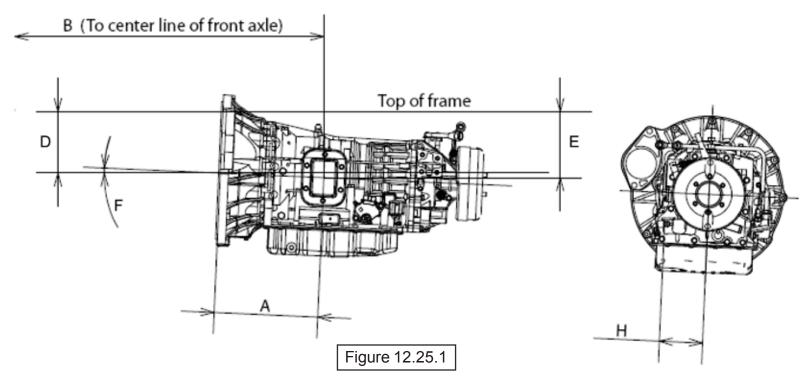

Revision: 11/30/2017

Brake System Diagram, Hydraulic Brake Booster

Please refer to Introduction Section of book for antilock system cautions and wheelbase modification requirements.

<u>Legend for 5000HD, 5500XD</u> Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Hydraulic Booster OilPump
- (4) Hydraulic Booster Reservoir
- (5) Cooler Pipe
- (6) Pipe Connector
- (7) Brake Fluid Reservoir
- (8) Master Cylinder
- (9) Hydraulic Booster Unit
- (10) Front Wheel Cylinder



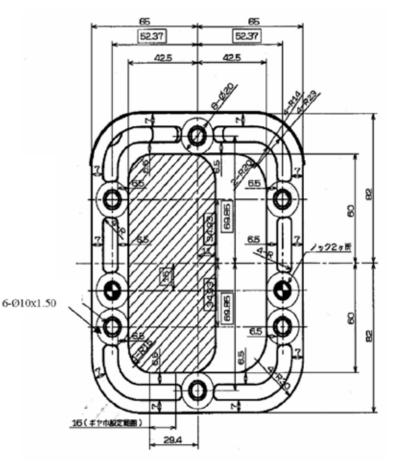
)ES	**************			<u> </u>	20000000	
	AKE HOSE PRESSURE	BRAKE HOSE LOW PRESSURE	BRAKE PIPE	HYDRAULIC HOSE (SUPPLY)	HYDRAULIC HOSE (RETURN/SUCTION)	 HYDRAULIC PIPE (RETURN/SUCTION)

Figure 12.24.1

PTO Location, Drive Gear and Opening Information

AUTOMATIC TRANSMISSION

Trans.	Opening	Bolt	Α	В	С	D	Е	F	Н	PTO Drive Gear	Ratio of PTO Drv.	No. of	Pitch	Helix	Max. Output Torque
	Location	Pattern								Location	Gear Spd. to Eng. Spd.	Teeth		Angle	
Aisin (1)	Left	(Dr2)	12.35	36.89	0	7.85	7.31	2.50	5.16	PTO Gear	1:1 with turbine	69	N/A	00	134 lbsft. @ 1,700 RPM


Figure 12.25.2

Opening Diagram

Aisin A460 Automatic Torque Converter Lock Up Function.

In either the Stationary Preset PTO Mode or Stationary Variable PTO Mode, when engine rpm exceeds 1200 RPM, the torque converter will lock up. The engine rpm can not be modified and the lockup function cannot be turned off. Please not that with PTO applications that operate around 1200 RPM, the transmission software holds the torque converter in lockup until engine speed falls below 1100 RPM

The lock up function will cancel if the transmission shift lever is moved from the park or neutral positions which will remove the trasmission from the stationary mode.

Additional PTO Functions

For certain applications the Automatic regeneration function can be inhibited (Example Airport Ground Support vehicles).

For certain applications the Automatic regeneration function can be enabled in the PTO stationary mode (Example Lawn care and carpet cleaning).

For certain applications the Automatic regeneration function can be enabled in the PTO mobile mode (Example Line painting).

Please refer to the PTO section of the BBG (section 17) for further details.

Figure 12.26.1

[₩] 12.27

Diesel Fuel Fill

Installation Instructions

- 1. Disconnect battery.
- 2. Loosen hose from the tie downs. Remove caps from plate on rail.
- 3. Install hoses onto the plate.
- 4. Extend hose out from the driver side of the rail to body rail.
- 5. The filler neck must be mounted to allow the fill plate bracket to be parallel to the frame horizontal.
- 6. Cover with protector wrap and secure with tie wraps.
- 7. Filler hose is set for 102 inches outside width body.
- 8. Filler neck (dimension A) must be between 6.85 inches and 8.5 inches above frame.
- 9. Secure the filler plate to the bottom of the body and check for leaks.
- 10. Ensure that fill hose does not sag, creating an area where the fuel could pool in the fill hose.
- 11. Reconnect battery.

Rear View Fuel Fill

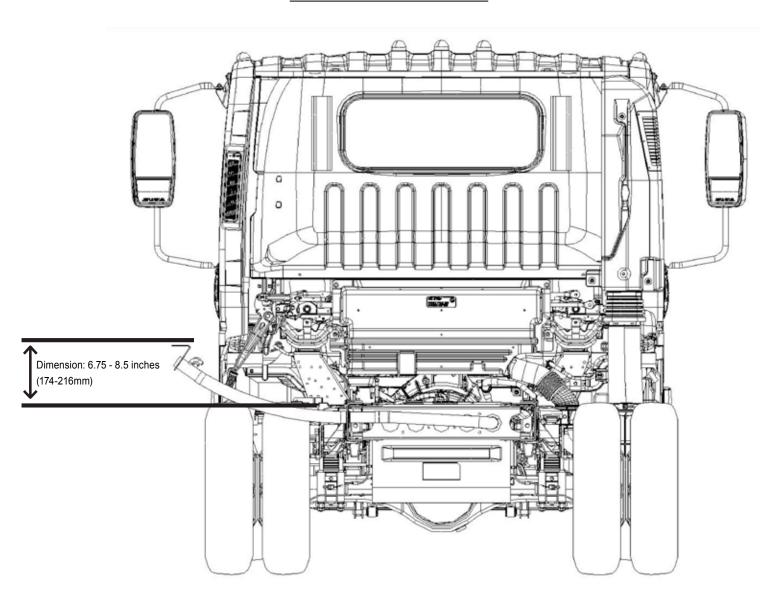
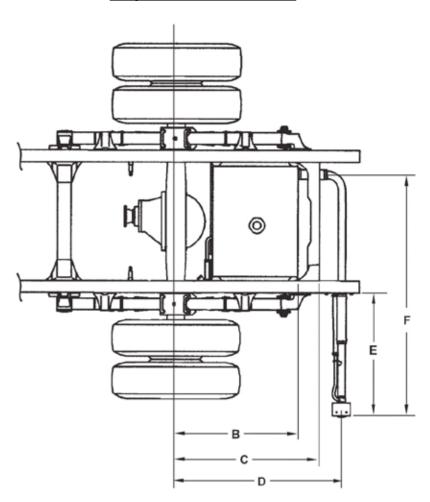



Figure 12.28.1

⁸ 12.29

Top View Fuel Fill

Dimensions:

B = 29.75 inches (756 mm)

C = 34.00 inches (863 mm)

D = 39.29 inches (998 mm)

E = 33.86 inches (860 mm)

F = 59.60 inches (1,514mm)

Figure 12.29.1

"A" Dimensions:

Hose Modification for Various Width Bodies and Fuel Fill Vent Protection

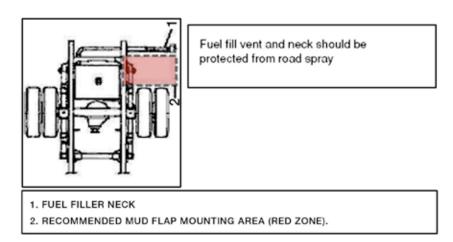
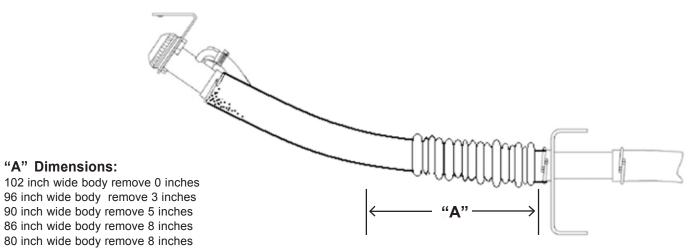



Figure 12.30.1

NOTE: Shorten hose by "A Dimension" based on chart at left.

Figure 12.30.2

Ultra Low Sulfur Diesel Label

Per EPA Title 40, Part 86, 86:007—35(c), The decal illustrated below must be installed on the vehicle. The decal is included in the fuel fill parts box.

> Ultra Low Sulfur Diesel Fuel Only

N' utiliser que du carburant diesel a teneur ultra-faible en soufre

INSTRUCTIONS FOR DECAL PLACEMENT:

- 1. The decal must be placed as close as possible to the fuel inlet and be clearly visible.
- 2. The decal should be placed above or to the side of the fuel cap to avoid corrosion by possible contact with fuel.
- 3. The decal may be placed on aerodynamic fairings, bodies, etc. as long as the decal is clearly visible and in close proximity to the fuel inlet.
- 4. For installed bodies that have a fuel door, the decal should be placed above or to the side of the fuel door.

Thoroughly clean the area of all grease, dirt, etc. before application of the decal. Apply the decal at room temperature, 65° to 75° F.

Figure 12.31.1

Through the Rail Fuel Fill Frame Hole

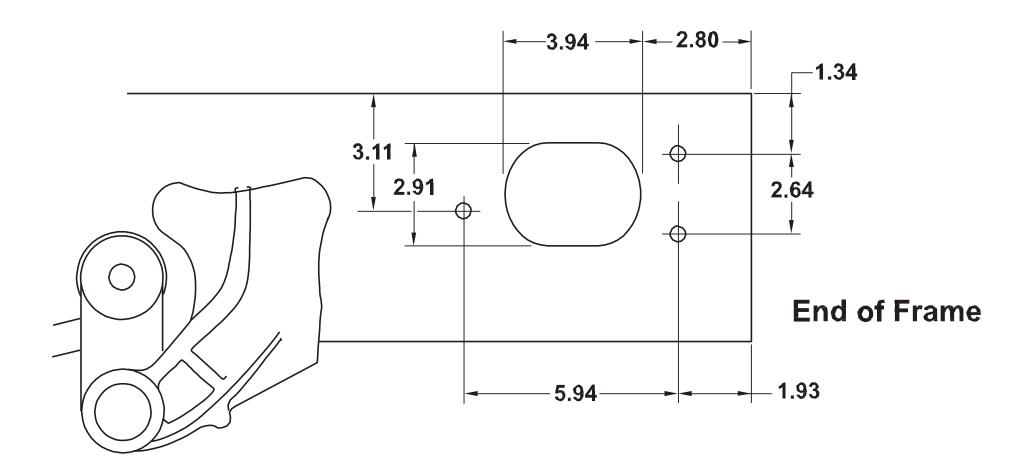
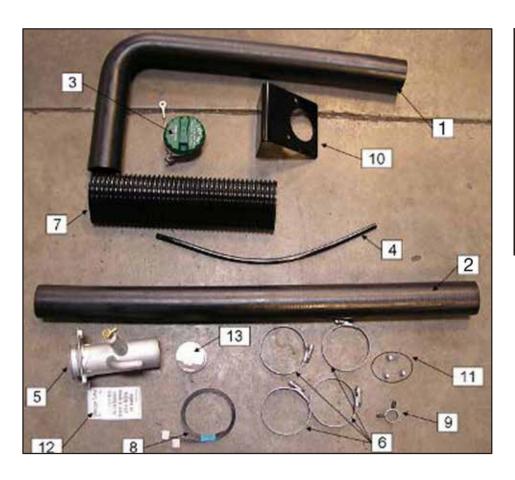



Figure 12.32.1

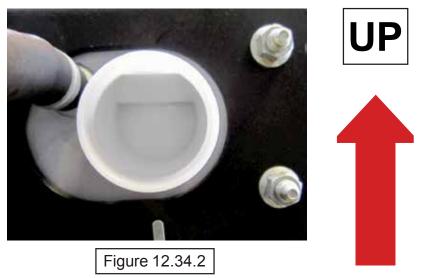
5500HD-Diesel Fuel Filler Kit Instructions

Please review these instructions prior to installation of the fuel filler kit.

PARTS KIT: This a kit for the Chevrolet LCF diesel products. Fuel filler kit shown below is used for 14,500 lb and higher GVWR chassis 3500HD, 4500HD, 4500XD, 5500HD, 5500XD. Parts list is shown in **FIGURE 12.31.2**. Parts photos are shown in **FIGURE 12.31.1**.

FUEL FILLER KIT								
ITEM #	PART NAME	PART#	QTY					
1	HOSE: FUEL FILLER NECK	See Dealer	1					
2	HOSE:FUELFILLER	See Dealer	1					
3	CAP: FILLER	See Dealer	1					
4	HOSE: ROLL-OVER VALVE	See Dealer	1					
5	NECK ASM: FUEL FILLER	See Dealer	1					
6	CLIP: JOINT	See Dealer	4					
7	PROTECTOR: FILLER HOSE	See Dealer	1					
8	CLIP: BAND, HOSE FIXING	See Dealer	2					
9	CLIP: RUBBER, HOSE	See Dealer	1					
10	BRACKET: FILLER NECK	See Dealer	1					
11	SCREW:FILLERNECK	See Dealer	3					
12	CAUTION PLATE	See Dealer	1					
13	SHUTTER: FUEL TANK	See Dealer	1					

Figure 12.33.2


Figure 12.33.1

Installation Instructions and Considerations:

The fuel tank shutter valve (13) was a new component for 2011 model year. This component is meant to improve fuel splash-back performance of the fuel system. This valve (13) is on the inlet (outboard side) of the fuel filler neck bulkhead assemble that is bolted to the left hand frame rail as shown in **FIGURE 12.34.1**. This plastic valve snaps into place in the inlet of the frame mounted fuel pipe. The valve should be installed so that the plastic clip is at the top of the valve, so that the flap door opens up, as shown in **FIGURES 12.34.2**.

Figure 12.34.1

The fuel filler hose should be installed flush against the tank. The clamp should be installed between 1/16" and 3/8" from the tank. This is shown in **FIGURE 12.34.3** below.

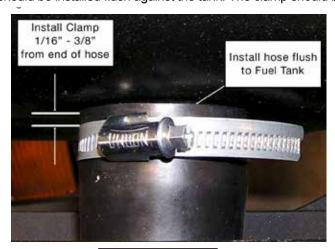
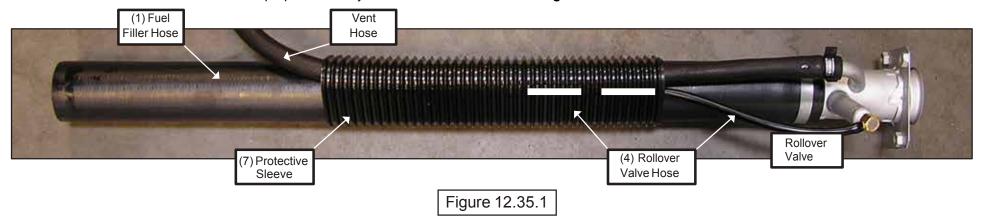



Figure 12.34.3

Roll-Over Valve Tubing

The roll-over valve has a hose attachment that will make this valve less sensitive to water intrusion. In order for the valve to work properly, it is critical that the hose be installed to the rollover valve. The proper assembly of the outer hose is shown in *Figure 12.35.1*.

Filler Neck Installation:

The fuel filler neck (5) must be installed with the proper orientation on the body. The neck should be installed with the roll-over valve pointing upward, with the bottom edge of the neck oriented parallel to the ground, plus 33 to minus 7 degrees. See *Figure 12.35.2*. for the proper orientation.

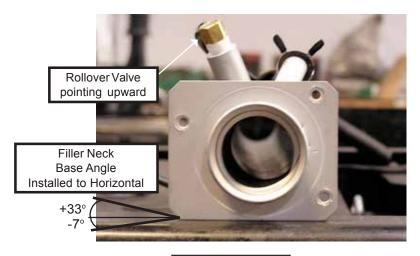


Figure 15.35.2

⁸ 13.1

4500XD Diesel Specifications

	4500XD Diesel Crew Cab
GVWR	16,000 lbs.
WB	150 in, 176 in.
Engine	Isuzu 4-cylinder, in-line 4-cycle, turbocharged, intercooled, direct injection diesel.
Model/Displacement	4HK1-TC/317 CID (5.19 liters)
HP(Gross)	215 HP @ 2,500 rpm
Torque(Gross)	452 lb-ft torque @ 1,850 rpm
Equipment	Dry element air cleaner with vertical intake; 2 rows 564 square in ² . radiator; 7 blade 20.1 in diameter fan with viscous drive.
	Cold weather starting device and an oil cooler. Engine oil level check. Engine warning system with audible warning for low oil
	pressure, high coolant temperature, and low coolant level. Engine cruise control function.
Transmission	Aisin A465 6 speed automatic transmission with fifth and sixth gear overdrive with lock up in
	2nd, 3rd, 4th, 5th and 6th, PTO capability automatic torque converter lockup in stationary PTO mode.
Steering	Integral power steering 18.8-20.9:1 ratio. Tilt and telescoping steering column.
Front Axle	Reverse Elliot "I"-Beam rated at 6,830 lbs.
Suspension	Semi-elliptical steel alloy tapered leaf springs with stabilizer bar and shock absorbers.
GAWR	6,630 lbs.
Rear Axle	Full-floating single speed with hypoid gearing rated at 11,020 lb.
Suspension	Semi-elliptical steel alloy multi-leaf springs and shock absorbers.
GAWR	11,020 lbs.
Wheels	19.5 x 6.0-K 6-hole disc wheels, painted white.
Tires	225/70R-19.5F (12 ply) LRR (Low Rolling Resistance) tubeless steel-belted radials, all-season front and rear
	Dual circuit vacuum assisted hydraulic service brakes with EBD (Electronic Brake Distribution) system for load proportioning of
Brakes	the brake system front disc and self-adjust outboard mounted drum rear. The parking brake is a mechanical,
	cable actuated, internal expanding drum type, transmission mounted. The exhaust brake is standard and is vacuum operated.
	4 channel anti-lock brake system.
Fuel Tank	30 gal. rectangular steel fuel tank mounted in frame rail behind rear axle. Fuel water separator with indicator light.
Frame	Ladder type channel section straight frame rail 33.5 inches wide through the total length of the frame.
	Yield strength 44,000 psi, section modulus 11.89 in., RBM 523,160.
Cab	All-steel 7 passenger low cab forward BBC 109.9 in.
	Tricot breathable cloth covered high back driver's seat with two occupant passenger seat.
Equipment	Four passenger rear bench seat. Dual cab mounted exterior mirrors with integral convex mirror. Tilt and telescoping steering column.
	Power windows and door locks, front floor mats, tinted glass.
Electrical	12 Volt, negative ground, dual maintenance free batteries, 750 CCA each, 140 Amp alternator with integral regulator.
Options	See last page for options.

NOTE: These selected specifications are subject to change without notice.

Vehicle Weights, Dimensions and Ratings

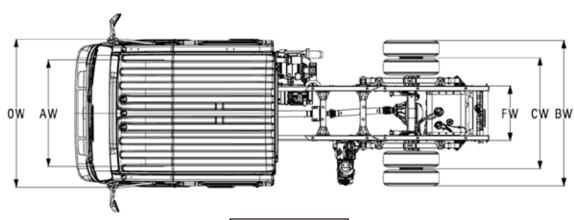


Figure 13.2.2

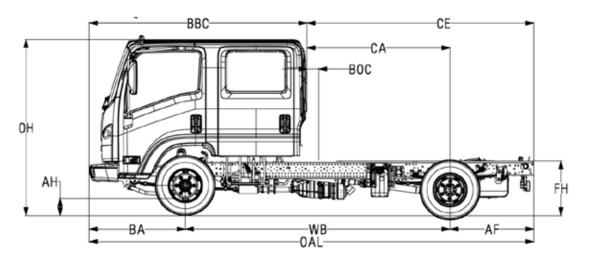


Figure 13.2.2

4500XD Variable Chassis Dimensions:

Unit	WB	CA*	CE*	OAL	AF
Inch	150	88.5	131.6	241.5	43.1
Inch	176	114.5	157.6	267.5	43.1
* Effe	ctive C	A & CE a	re CA oi	CE less	BOC.

4500XD Dimension Constants:

Code	Inches	Code	Inches
AH	7.5	BW	83.3
AW	65.6	CW	65
BA	48.3	FW	33.5
BBC	109.9	ОН	92.4
BOC	5.3	OW	81.3
FH	33.0		

4500XD In-Frame Tank

16,000 lb. GVWR Automatic Transmission Model Chassis Cab and Maximum Payload Weights

Model	RPO	WB	Unit	Front	Rear	Total	Payload
T43043	EE3	150 in	lb.	4610	2485	7095	8905
T44043	FNR	176 in	lb.	4683	2477	7160	8840

[₩] 13.3

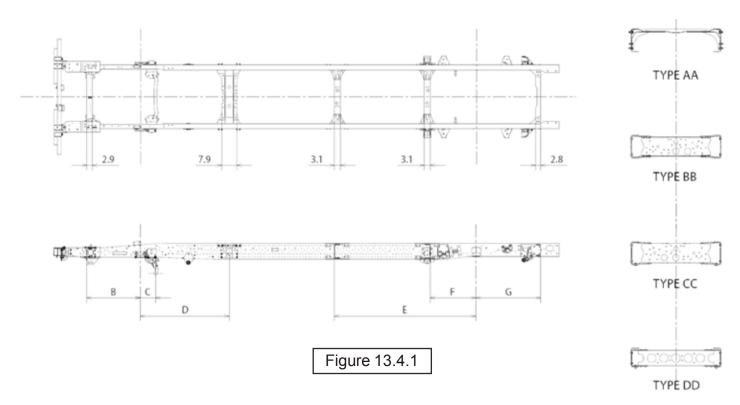
Vehicle Weight Limits

Vehicle Weight Limits: 4500XD

GVWR Designed Maximum 16,000 lbs.

GAWR, Front 6,630 lbs.
GAWR, Rear 11,020 lbs.

Technical Notes:


Chassis Curb Weight includes standard equipment and fuel. Does not include driver, passenger, payload, body or special equipment.

Maximum Payload Weight is the allowed maximum for equipment, body, payload, driver and passengers and is calculated by subtracting chassis curb weight from the GVWR.

	Weights for Options										
RPO (1)	Option Description	Front / Rear Lbs.									
9D2	Speed Limited to 58 MPH	0/0									
9C2	Speed Limited to 65 MPH	0/0									
9E2	Speed Limited to 68 MPH	0/0									
ATG	Keyless entry	3 / 0									
9B9	Speed Limited to 70 MPH	0/0									
K05	Block Heater (cord)	1/0									
KPG	Locking DEF tank cap	0/0									
UIZ	AM/FM/CD Radio with Ax input/USB port and Bluetooth	0/0									
KQ3	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0									
BD6	Heated dual remote control mirrors (15" head)	3 / 0									
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer	19 / 0									
KPK	Engine Oil Pan Heater (120v 300w)	2/0									
KPJ	Engine emergency shutdown system HWT, LWL, LOP (4)	0/0									
PTO	PTO Enable Switch and Engine Idle Up Switch recommended for PTO and Idle applications only (2)	1/0									
DB8	Heated Mirrors	1/0									
TBD	Mirror Bracket for 102" wide body	1/0									
9W8	Seat covers crew cab	9 / 2									
IX2	Rear Body Dome Lamp Switch (6)	1/0									
UL5	Delete Standard AM/FM/CD Radio	3/0									
KGN	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0									
UZF	Back up alarm	0 / 2									
V22	Chrome Grille	1/0									

⁸ 13.4

Frame and Crossmember Specifications

Wheelbase	Frame	Crossmember Type/Location								
	Thick	B C D E F C								
150.0	0.24	28.3	7.9	AA 465	BB 57.9	CC 24.2	DD 33.8			
176.0	0.24	28.3	7.9	AA 46.5	BB 74.4	CC 24.2	DD 33.8			

Figure 13.4.2

Frame Chart

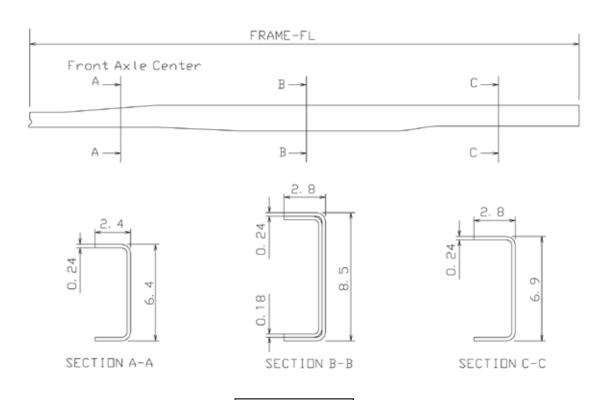


Figure 13.5.1

Wheelbase	Frame FL	Frame Thickness
150.0	223.8	0.24 + 0.18
176.0	249.8	0.24 + 0.18

Figure 13.5.2

4500XD Diesel Standard Cab Top View

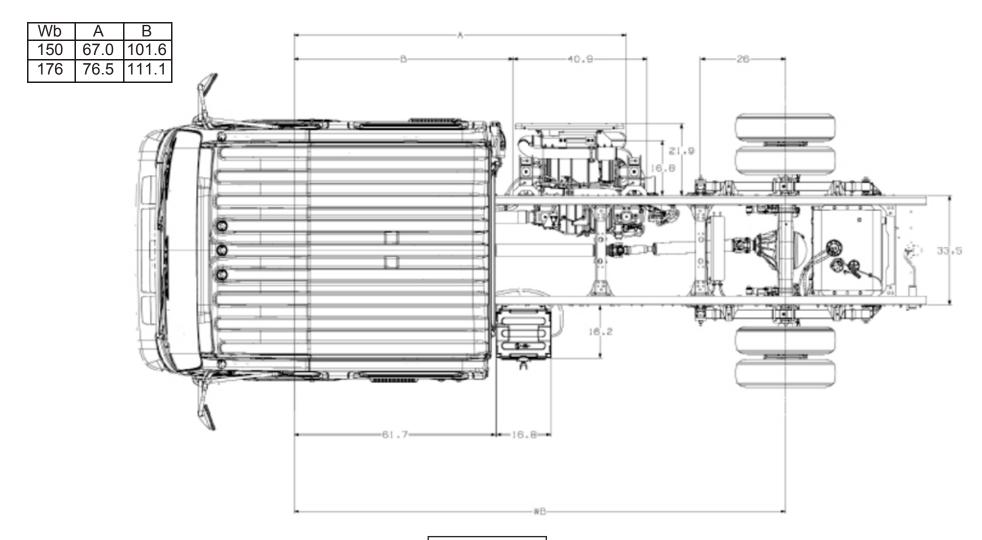


Figure 13.6.1

4500XD Diesel Standard Cab Left Side View

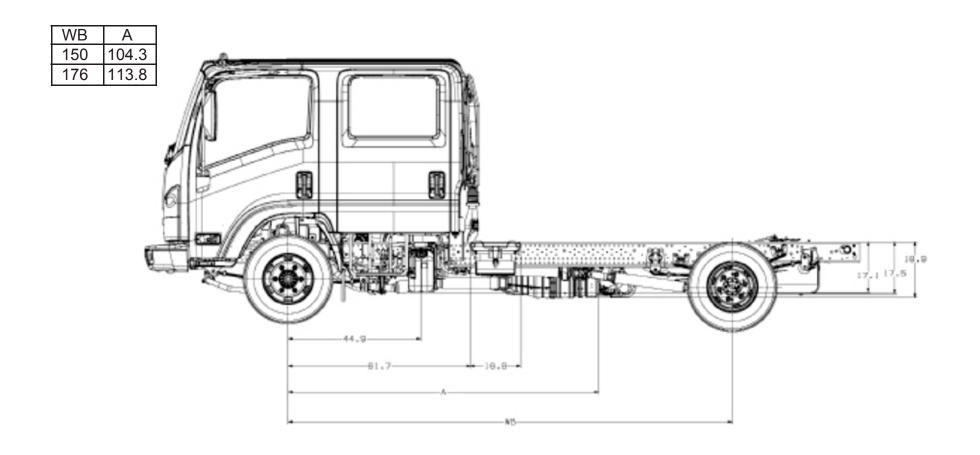


Figure 13.7.1

4500XD Diesel Standard Cab Right Side View

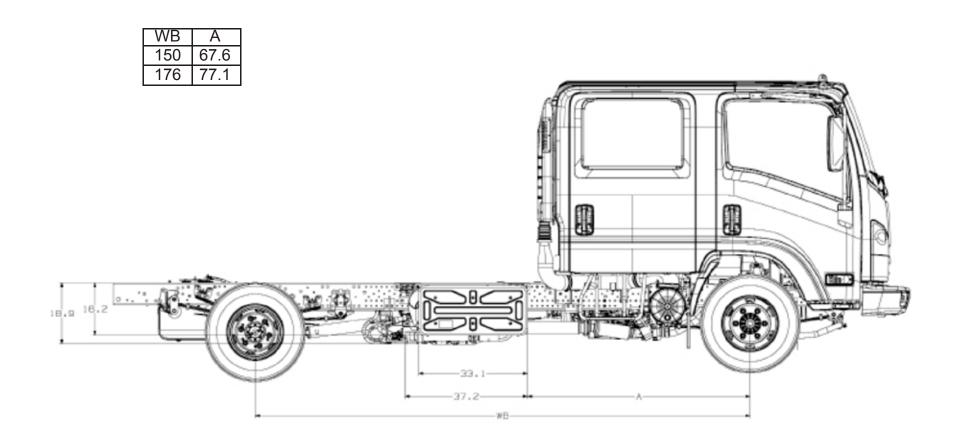


Figure 13.8.1

SCR / DPF 4HK1-TC

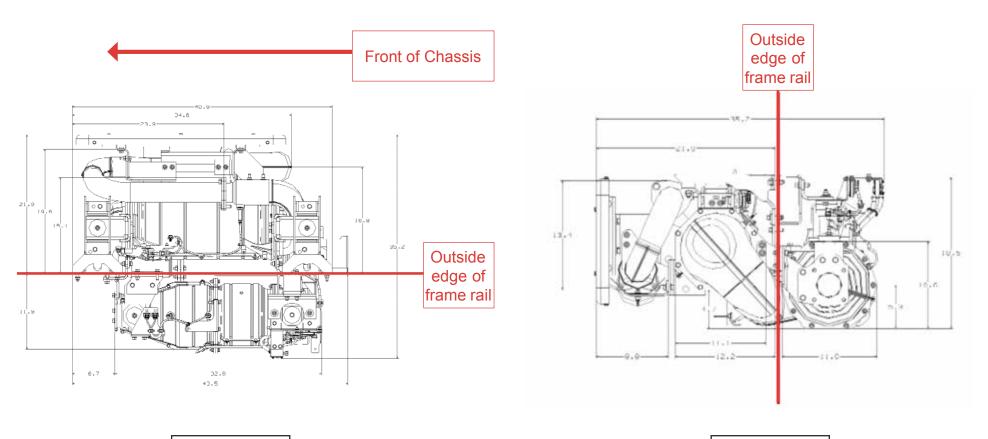


Figure 13.9.1

Figure 13.9.2

[₩] 13.10

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase

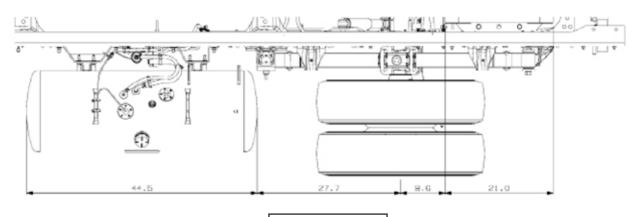
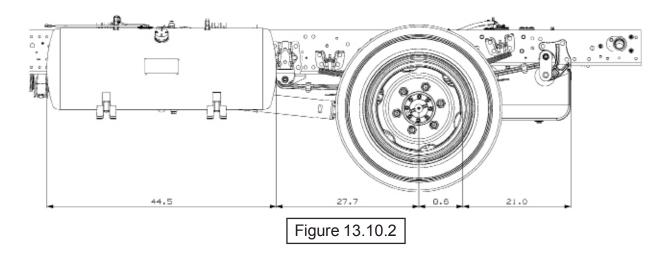



Figure 13.10.1

CENTER OF GRAVITY

Horizontal and Vertical CG of Chassis

4500XD								
WB	V	Н						
150	25.3	50.9						
176	25.3	58.8						

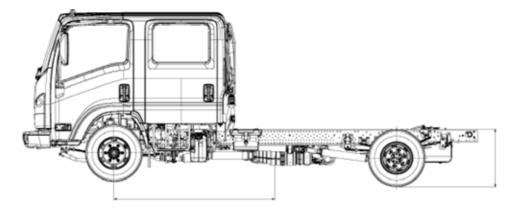


Figure 13.11.1

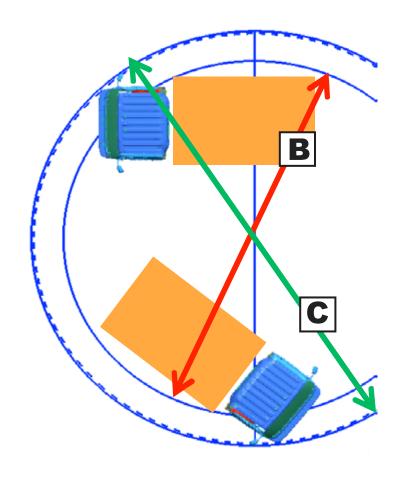
The center of gravity of the completed vehicle with a full load should not exceed 63 inches above ground level for the 16,000 lbs. GVWR, and must be located horizontally between the centerlines of the front and rear axles.

NOTE: The Final Manufacturer must ensure that the combined vertical center of gravity of the chassis, body, and available payload at full GVW does not exceed the maximum vertical center of gravity outlined in the Chevrolet LCF Incomplete Vehicle Document and the GM Body Builders Guide.

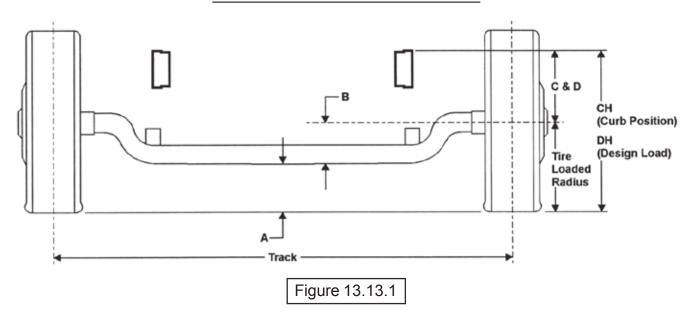
The maximum dimensions for a body installed on the LCF chassis are 102 inches wide (outside*) by 91 inches high (inside). Any larger body applications must be approved by GM Upfitter Engineering. Contact us on gmupfitter.com.

*With 102 inches wide mirror brackets installed in place of standard mirror brackets

Turning Diameters


TURNING DIAMETERS

The LCF Series Diesel steering also features a 46.50 inside wheel cut angle. This, coupled with the integral power steering, makes the LCF Series Diesel an extremely maneuverable truck.


B=MINIMUM TURNING DIAMETER CURB TO CURB

C=MINIMUM TURNING DIAMETER WALL TO WALL

4500X	D	
WB	В	С
	CURB TO CURB	(FT. WALL TO WALL (FT.)
150.0	45.3	50.2
176.0	52.5	58.1
ß		

Front Axle Chart 4500XD

Formulas for calculating height dimensions:

A = Tire Loaded Radius – B

C = Centerline of Axle to Top of Frame Rail at Curb Position
Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius
DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	Α	В	С	D	СН	DH	Track	Tire Radius	
										Unload	Load
225/70R 19.5F	16,000 lbs.	6,630 lbs.	8.6	6.6	12.3	11.5	28.4	26.7	65.5	16.1	15.24

Figure 13.13.2

Rear Axle Chart 4500XD

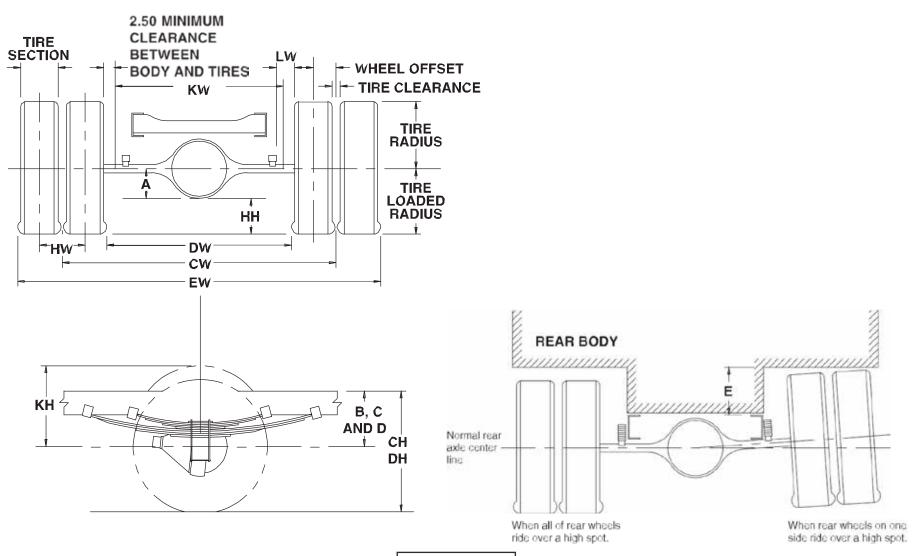


Figure 13.14.1

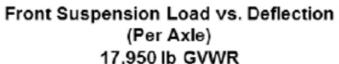
[₩] 13.15

Definitions

	<u> </u>	THE CHO
		Rear Frame Height:
Centerline of axle to bottom of axle bowl.	DH	Vertical distance between the normal top of frame rail and the ground-line
		through the centerline of the rear axle at design load.
Centerline of axle to top of frame rail at metal-to-metal position.	DW	Minimum distance between the inner surfaces of the rear tires.
Centerline of axle to top of frame rail at curb position.	EW	Maximum Rear Width:
		Overall width of the vehicle measured at the outermost surface of the rear tires.
Centerline of axle to top of frame rail at design load.		Rear Tire Clearance:
	НН	Minimum clearance between the rear axle and the ground-line.
Rear Tire Clearance:		Dual Tire Spacing:
Minimum clearance required for tires and chain measured from the		Distance between the centerlines of the minimum distance required for tire bounce
top of the frame at the vehicle centerline of the rear axle, when rear	HW	as measured from the centerline of the rear axle and the top of the rear tire when
wheels on one side ride over a high spot.		one wheel rides over a high spot.
Rear Frame Height:		Track Dual Rear Wheel Vehicle:
Vertical distance between the normal top of frame rail and the	CW	Distance between the centerlines of the dual wheels measured at the ground-line.
ground-line through the centerline of the rear axle at curb		
position.		
Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance	'	See Chart for values.
	Centerline of axle to bottom of axle bowl. Centerline of axle to top of frame rail at metal-to-metal position. Centerline of axle to top of frame rail at curb position. Centerline of axle to top of frame rail at design load. Rear Tire Clearance: Minimum clearance required for tires and chain measured from the top of the frame at the vehicle centerline of the rear axle, when rear wheels on one side ride over a high spot. Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at curb position.	Centerline of axle to bottom of axle bowl. Centerline of axle to top of frame rail at metal-to-metal position. Centerline of axle to top of frame rail at curb position. EW Centerline of axle to top of frame rail at design load. HH Rear Tire Clearance: Minimum clearance required for tires and chain measured from the top of the frame at the vehicle centerline of the rear axle, when rear wheels on one side ride over a high spot. Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at curb position.

Figure 13.15.1

	Formulas for Calculating Rear Width and Height Dimensions											
CW	= Track	НН	= Tire loaded radius – A									
СН	= Tire loaded radius + C	JH	= KH – B									
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches									
DW	= Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches									
ΕW	= Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs									


Figure 13.15.2

NOTE: Track and overall width may vary with optional equipment.

Tire	GAWR	Track CW	Α	В	С	D	E
225/70R-19.5F	11,020 lbs.	65.0	7.7	9.3	15.5	13.4	8.4

Figure 13.15.3

4500XD Suspension Deflection Charts

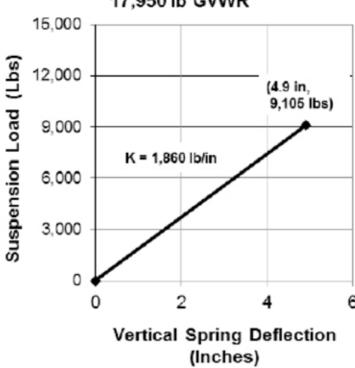


Figure 13.16.1

Rear Suspension Load vs. Deflection (Per Axle) 17.950 lb GVWR

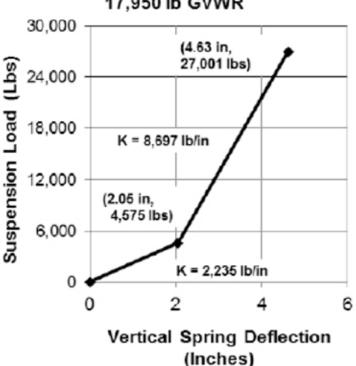


Figure 13.16.2

[₩] 13.17

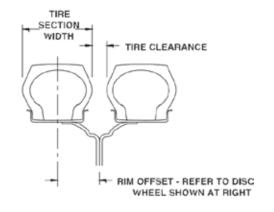
Tire and Disc Wheel Chart 4500XD

Tire

	Tire L	oad Limit and Co	ld Inflation Press	sures	Maximum Tire Lo		
Tire Size	Single Dual Front		Rear	GVWR (Lbs.)			
	Lbs.	PSI	Lbs.	PSI	2 Single	4 Dual	
225/70R 19.5F	3,315	85	3,115	85	6,630	12,460	16,000

Figure 13.17.1

			Tire R	adius				
Tire Size	GVWR (Lbs.)	Loa	ded	Unlo	aded	Tire Section	Tire Clearance	Design Rim
		Front	Rear	Front	Rear	Width		Width
225/70R 19.5F	16,000	14.93	14.98	16	16	8.7	1.3	6.0


Figure 13.17.2

Disc Wheel

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
19.5 x 6.00	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	325 ftlb. (440 N•m)	6.46	5.0	0.35	15º DC	Steel TOPY

*O.D. Wrench Sizes

Figure 13.17.3

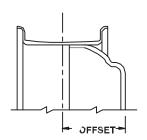


Figure 13.17.4

Note: Dimensions in inches

Revision: 11/30/2017

Propeller Shaft 4500XD

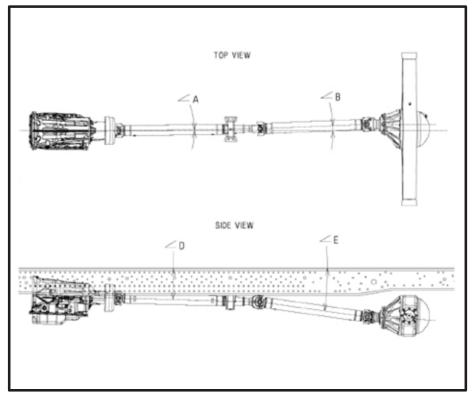


Figure 13.18.1

WheelBase	Top \	√iew	Side View				
(in.)	∠A	∠B	∠D	∠E	Trans	Rear Axle	
150	0°	2.7°	2.6°	8.0°	2.5°	2.5°	
176	0°	1.8°	2.1°	5.4°	2.5°	2.5°	

Figure 13.18.2

NOTES 1. Angles privuded in table are relative to the frame angle. Please take this into consideration for service measurements.

2. Driveline angles are based on the chassis curb weight which includes standard equipment, fuel but no driver, body, or payload.

Automatic Transmission

4500XD					
Trans. Type	6 Automatic. Transmission				
Wheelbase	150	176			
No. of Shafts	2	2			
Shaft #1 O.D.	3.54	3.54			
Thickness	0.126	0.126			
Length	40.24	49.69			
Type	В	В			
Shaft #2 O.D.	3.54	3.54			
Thickness	0.126	0.126			
Length	36.53	52.93			
Type	С	С			

Figure 13.19.1

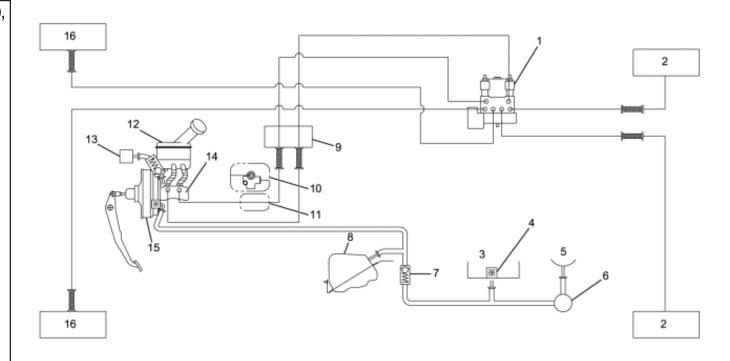
Туре	Description	Illustration
Туре В	1st shaft in 2-piece driveline	
Type (2nd shaft in 2-piece driveline	

Figure 13.19.2

Note: Dimensions in inches

Revision: 11/30/2017

Brake System Diagram, 16,000 GVW

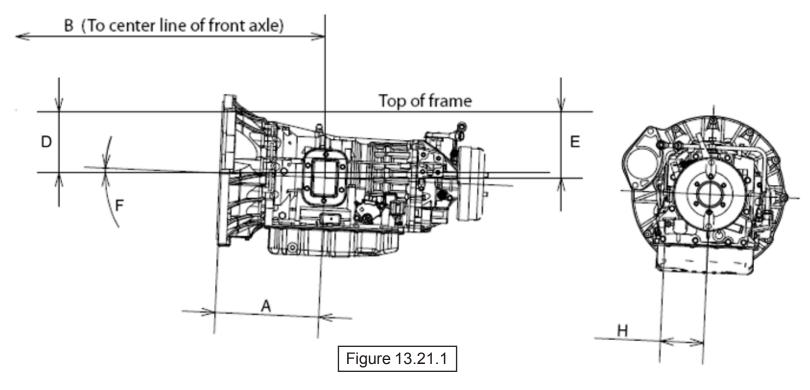

Vacuum Over Hydraulic

Please refer to introduction section of book for antilock system cautions and wheelbase modification requirements.

Legend for 3500, 3500HD, 4500, 4500HD,

4500XD Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Vacuum Pump
- (4) Check Valve
- (5) Exhaust Brake Valve
- (6) Magnetic Valve
- (7) Check Valve (One-way Valve)
- (8) Vacuum Tank
- (9) 4-Way Connector
- (10) With Metering Valve
- (11) W/O Metering Valve
- (12) Brake Fluid Reservoir
- (13) Electric Vacuum Pump
- (14) Master Cylinder
- (15) Vacuum Booster
- (Servo Unit)
- (16) Front Wheel Cylinder



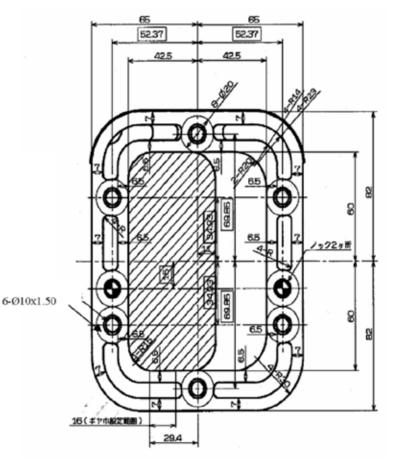
[333333333]	[(→) (M) (→)
BRAKE HOSE HIGH PRESSURE	BRAKE HOSE LOW PRESSURE	BRAKE PIPE	VACUUM LINE	CHECK VALVE (ONE WAY VALVE)

Figure 13.20.1

PTO Location, Drive Gear and Opening Information

AUTOMATIC TRANSMISSION

Trans.	Opening	Bolt	Α	В	С	D	Е	F	Н	PTO Drive Gear	Ratio of PTO Drv.	No. of	Pitch	Helix	Max. Output Torque
	Location	Pattern								Location	Gear Spd. to Eng. Spd.	Teeth		Angle	
Aisin (1)	Left	(Dr2)	12.35	36.89	0	7.85	7.31	2.50	5.16	PTO Gear	1:1 with turbine	69	N/A	00	134 lbsft. @ 1,700 RPM


Figure 13.21.2

Opening Diagram

Aisin A460 Automatic Torque Converter Lock Up Function.

In either the Stationary Preset PTO Mode or Stationary Variable PTO Mode, when engine rpm exceeds 1200 RPM, the torque converter will lock up. The engine rpm can not be modified and the lockup function cannot be turned off. Please not that with PTO applications that operate around 1200 RPM, the transmission software holds the torque converter in lockup until engine speed falls below 1100 RPM

The lock up function will cancel if the transmission shift lever is moved from the park or neutral positions which will remove the trasmission from the stationary mode.

Additional PTO Functions

For certain applications the Automatic regeneration function can be inhibited (Example Airport Ground Support vehicles).

For certain applications the Automatic regeneration function can be enabled in the PTO stationary mode (Example Lawn care and carpet cleaning).

For certain applications the Automatic regeneration function can be enabled in the PTO mobile mode (Example Line painting).

Please refer to the PTO section of the BBG (section 17) for further details.

Figure 13.22.1

⁸ 13.23

Diesel Fuel Fill

Installation Instructions

- 1. Disconnect battery.
- 2. Loosen hose from the tie downs. Remove caps from plate on rail.
- 3. Install hoses onto the plate.
- 4. Extend hose out from the driver side of the rail to body rail.
- 5. The filler neck must be mounted to allow the fill plate bracket to be parallel to the frame horizontal.
- 6. Cover with protector wrap and secure with tie wraps.
- 7. Filler hose is set for 102 inches outside width body.
- 8. Filler neck (dimension A) must be between 6.85 inches and 8.5 inches above frame.
- 9. Secure the filler plate to the bottom of the body and check for leaks.
- 10. Ensure that fill hose does not sag, creating an area where the fuel could pool in the fill hose.
- 11. Reconnect battery.

Rear View Fuel Fill

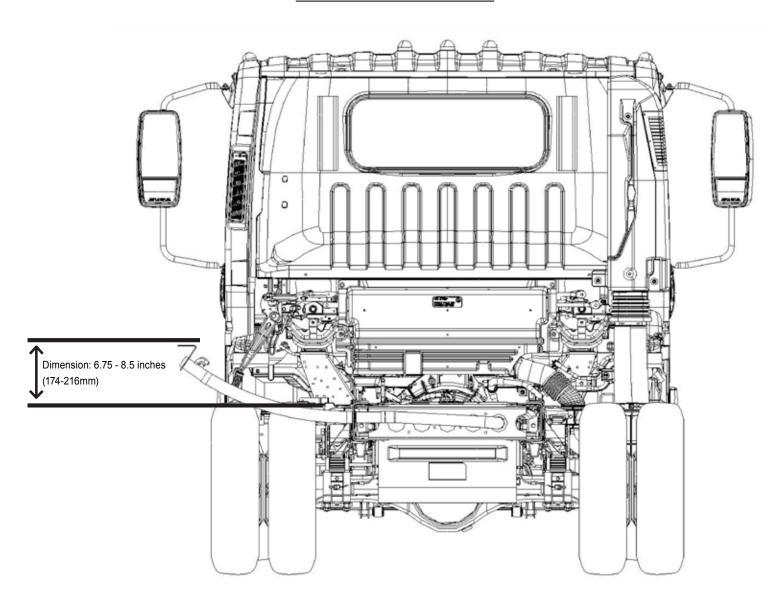
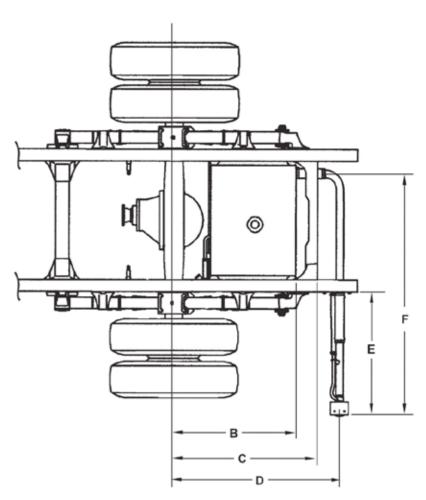



Figure 13.24.1

[₩] 13.25

Top View Fuel Fill

Dimensions:

B = 29.75 inches (756 mm)

C = 34.00 inches (863 mm)

D = 39.29 inches (998 mm)

E = 33.86 inches (860 mm)

F = 59.60 inches (1,514mm)

Figure 13.25.1

"A" Dimensions:

g 13.26

Hose Modification for Various Width Bodies and Fuel Fill Vent Protection

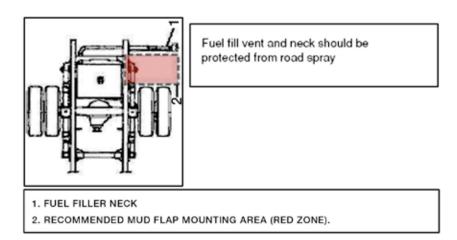
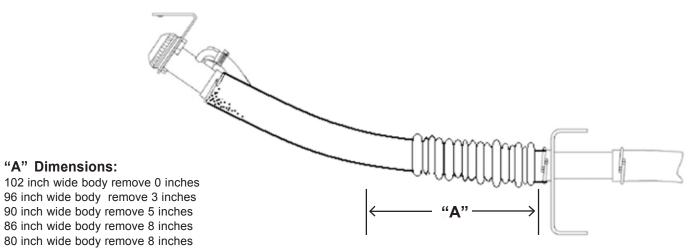



Figure 13.26.1

NOTE: Shorten hose by "A Dimension" based on chart at left.

Figure 13.26.2

Ultra Low Sulfur Diesel Label

Per EPA Title 40, Part 86, 86:007—35(c), The decal illustrated below must be installed on the vehicle. The decal is included in the fuel fill parts box.

> Ultra Low Sulfur Diesel Fuel Only

N' utiliser que du carburant diesel a teneur ultra-faible en soufre

INSTRUCTIONS FOR DECAL PLACEMENT:

- 1. The decal must be placed as close as possible to the fuel inlet and be clearly visible.
- 2. The decal should be placed above or to the side of the fuel cap to avoid corrosion by possible contact with fuel.
- 3. The decal may be placed on aerodynamic fairings, bodies, etc. as long as the decal is clearly visible and in close proximity to the fuel inlet.
- 4. For installed bodies that have a fuel door, the decal should be placed above or to the side of the fuel door.

Thoroughly clean the area of all grease, dirt, etc. before application of the decal. Apply the decal at room temperature, 65° to 75° F.

Figure 13.27.1

Through the Rail Fuel Fill Frame Hole

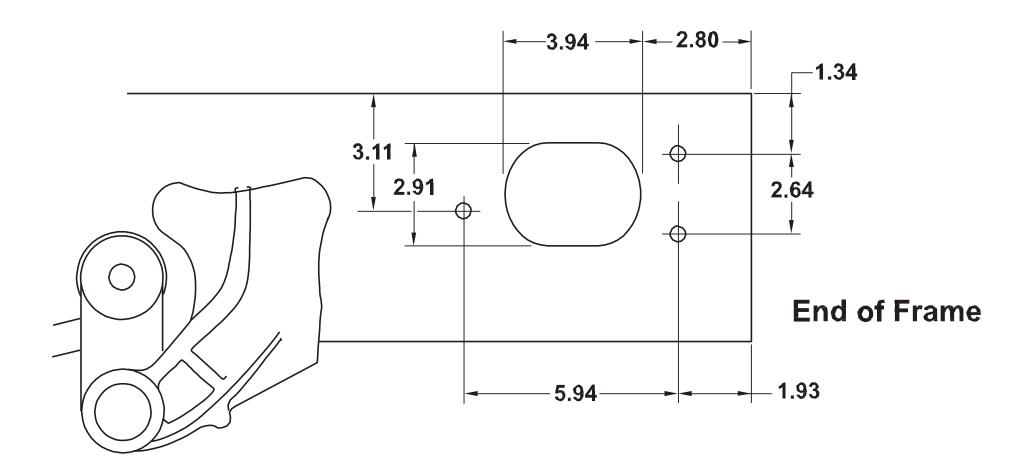
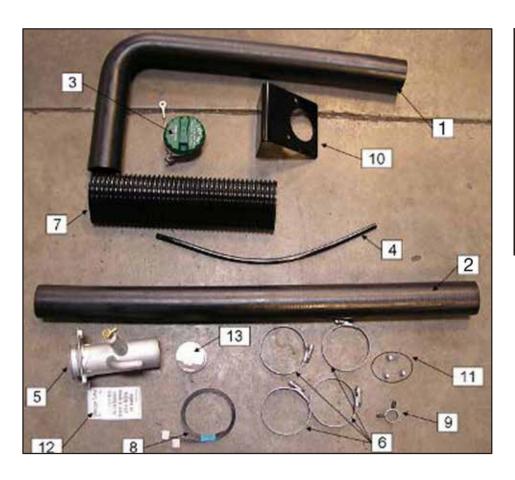



Figure 13.28.1

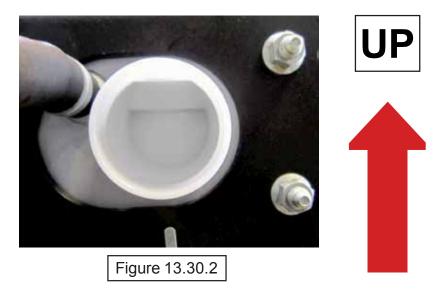
4500XD-Diesel Fuel Filler Kit Instructions

Please review these instructions prior to installation of the fuel filler kit.

PARTS KIT: This a kit for the Chevrolet LCF diesel products. Fuel filler kit shown below is used for 14,500 lb and higher GVWR chassis 3500HD, 4500HD, 4500XD, 5500HD, 5500XD. Parts list is shown in **FIGURE 13.29.2**. Parts photos are shown in **FIGURE 13.29.1**.

FUEL FILLER KIT									
ITEM #	PART NAME	PART#	QTY						
1	HOSE: FUEL FILLER NECK	See Dealer	1						
2	HOSE:FUELFILLER	See Dealer	1						
3	CAP: FILLER	See Dealer	1						
4	HOSE: ROLL-OVER VALVE	See Dealer	1						
5	NECK ASM: FUEL FILLER	See Dealer	1						
6	CLIP: JOINT	See Dealer	4						
7	PROTECTOR: FILLER HOSE	See Dealer	1						
8	CLIP: BAND, HOSE FIXING	See Dealer	2						
9	CLIP: RUBBER, HOSE	See Dealer	1						
10	BRACKET: FILLER NECK	See Dealer	1						
11	SCREW:FILLERNECK	See Dealer	3						
12	CAUTION PLATE	See Dealer	1						
13	SHUTTER: FUEL TANK	See Dealer	1						

Figure 13.29.2


Figure 13.29.1

Installation Instructions and Considerations:

The fuel tank shutter valve (13) is meant to improve fuel splash-back performance of the fuel system. This valve (13) is on the inlet (outboard side) of the fuel filler neck bulkhead assemble that is bolted to the left hand frame rail as shown in *Figure 13.30.1*. This valve snaps into place in the inlet of the frame mounted fuel pipe. The valve should be installed so that the plastic clip is at the top of the valve, so that the flap door opens up, as shown in *Figures 13.30.2*.

Figure 13.30.1

The fuel filler hose should be installed flush against the tank. The clamp should be installed between 1/16" and 3/8" from the tank. This is shown in *Figure 13.30.3* below.

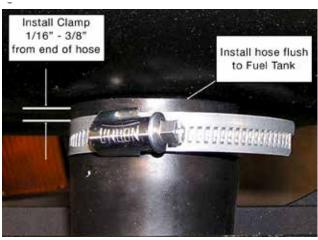
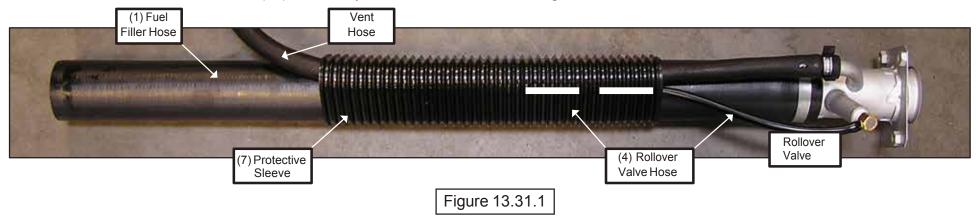



Figure 13.30.3

Roll-Over Valve Tubing

The roll-over valve has a hose attachment that will make this valve less sensitive to water intrusion. In order for the valve to work properly, it is critical that the hose be installed to the rollover valve. The proper assembly of the outer hose is shown in *Figure 13.31.1*.

Filler Neck Installation:

The fuel filler neck (5) must be installed with the proper orientation on the body. The neck should be installed with the roll-over valve pointing upward, with the bottom edge of the neck oriented parallel to the ground, plus 33 to minus 7 degrees. See **FIGURE 13.31.2**. for the proper orientation.

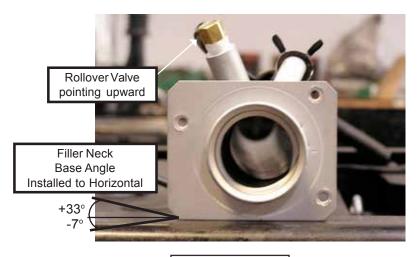


Figure 13.31.2

14.1

4500HD, 5500HD Crew Cab Diesel Specifications

Model	4500HD Diesel Crew Cab	5500HD Diesel Crew Cab					
GVWR	14,500 lbs.	17,950 lbs.					
WB	150) in, 176 in.					
Engine	Isuzu 4-cylinder, in-line 4-cycle, turbo	ocharged, intercooled, direct injection diesel.					
Model/Displacement	4HK1-TC/3	17 CID (5.19 liters)					
HP(Gross)	215 HF	215 HP @ 2,500 rpm					
Torque (Gross)	452 lb-ft to	orque @ 1,850 rpm					
Equipment Dry element air cleaner with vertical intake; 2 rows 564 square in². radiator; 7 blade 20.1 in diameter fan with visco							
	Cold weather starting device and an oil cooler. Engine oil level chec	ck. Engine warning system with audible warning for low oil					
	pressure, high coolant temperature, and low coolant level. Engine c	cruise control function.					
Transmission	Aisin A465 6 speed automatic transmission with fift	th and sixth gear overdrive with lock up in					
	2nd, 3rd, 4th, 5th and 6th, PTO capability automatic tor	que converter lockup in stationary PTO mode.					
Steering		ratio. Tilt and telescoping steering column.					
Front Axle	Reverse Elliot "I"-	Beam rated at 6,830 lbs.					
Suspension	Semi-elliptical steel alloy tapered leaf sp	prings with stabilizer bar and shock absorbers.					
GAWR	5,360 lbs. 6,830 lbs.						
Rear Axle	Full-floating single speed with hypoid gearing rated at 14,550 lb.						
Suspension	Semi-elliptical steel alloy multi-leaf springs and shock absorbers.						
GAWR	9,880 lbs.	12,980 lbs.					
Wheels	16 x 6.0-K 6-hole disc wheels,						
Tires	215/85R 16-E (10 pr) (LRR) Low Rolling Resistance tubeless stee	el-belted radials, all-season front and rear. 225/70R-19.5E (12 ply)					
Brakes	tion) system for load proportioning of the brake system front disc and self-ad just outboard mounted drum rear. The parking brake is a mechanical, cable actuated, internal expanding drum type, transmission mounted. The exhaust brake is standard and is vacuum operated. 4 channel anti-lock brake system	ual circuit vacuum assisted hydraulic service brakes with EBD (Electronic Brake Distribu- ion) system for load proportioning of Brakes the brake system front disc and self-adjust utboard mounted drum rear. The parking brake is a mechanical, cable actuated, internal panding drum type, transmission mounted. The exhaust brake is standard and is vacuum operated. 4 channel anti-lock brake system					
Fuel Tank	30 gal. rectangular steel fuel tank mounted in frame rail beh	nind rear axle. Fuel water separator with indicator light.					
Frame	Ladder type channel section straight frame rail 33.5 inches w						
	Yield strength 44,000 psi, section modulus 1						
Cab	All-steel 7 passenger low ca						
	Tricot breathable cloth covered high back driver's seat v	with two occupant passenger seat.					
Equipment	Four passenger rear bench seat. Dual cab mounted exterior mirrors w						
	Power windows and door locks, front floor						
Electrical	12 Volt, negative ground, dual maintenance free batteries, 750	0 CCA each, 140 Amp alternator with integral regulator.					

NOTE: These selected specifications are subject to change without notice.

Vehicle Weights, Dimensions and Ratings

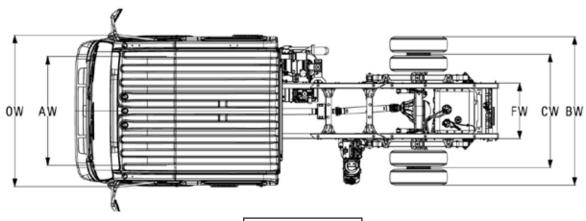


Figure 14.2.1

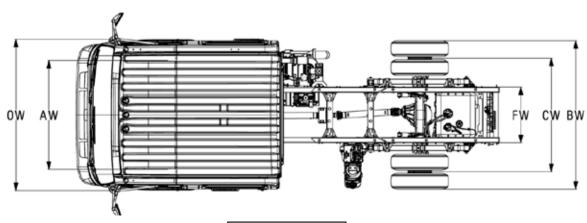
OH AH BA OAL CE

Figure 14.2.2

4500HD Variable Chassis Dimensions:

Unit	WB	CA*	CE*	OAL	AF				
Inch	150	88.5	131.6	241.5	43.1				
Inch	176	114.5	157.6	267.5	43.1				
* Effective CA & CE are CA or CE less BOC.									

4500HD Dimension Constants:


Code	Inches	Code	Inches
AΗ	7.5	BW	83.3
AW	65.6	CW	65
BA	48.3	FW	33.5
BBC	109.9	ОН	90.8
BOC	5.3	OW	81.3
FH	31.1		

4500HD In-Frame Tank

14,500 lb. GVWR Automatic Transmission Model Chassis Cab and Maximum Payload Weights

		WB	•	•		Total	Payload
T33043	EE3	150.0 in	lb.	4415	2253	6668	7832
T34043	FNR	176.0 in	lb.	4491	2243	6734	7766

Vehicle Weights, Dimensions and Ratings

Figure 14.3.1

OH AH BA OWB AF

Figure 14.3.2

5500HD Variable Chassis Dimensions:

Unit	WB	CA*	CE*	OAL	ΑF
Inch	150	88.5	131.6	241.5	43.1
Inch	176	114.5	157.6	267.5	43.1
* Effe	ective CA	& CE a	re CA or	CE less	BOC

5500HD Dimension Constants:

Code	Inches	Code	Inches
AH	7.5	BW	83.3
AW	65.6	CW	65
BA	48.3	FW	33.5
BBC	109.9	ОН	92.4
BOC	5.3	OW	81.3
FH	33.0		

5500HD In-Frame Tank

17,950 lb. GVWR Automatic Transmission Model Chassis Cab and Maximum Payload Weights

Model	RPO	WB	Unit	Front	Rear	Total	Payload
T53043	EE3	150 in	lb.	4640	2562	7202	10748
T54043	FNR	176 in	lb.	4714	2556	7270	10680

14.4

Vehicle Weight Limits

Vehicle Weight Limits: 4500HD 5500HD

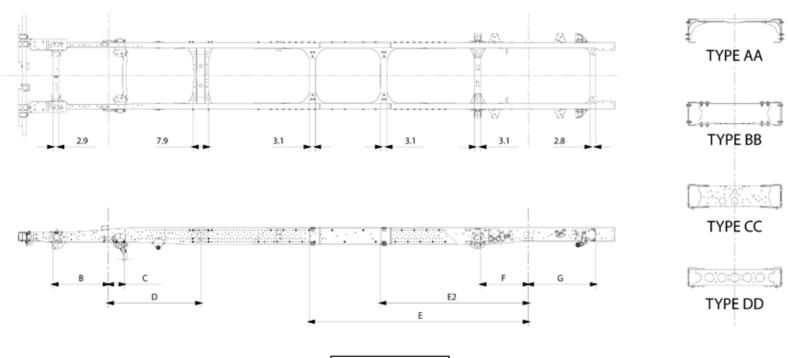
GVWR Designed Maximum 14,500 lbs. 17,950 lbs.

GAWR, Front 5,360 lbs. 6,380 lbs.

GAWR, Rear 9,880 lbs. 12,980 lbs.

Technical Notes:

Chassis Curb Weight includes standard equipment and fuel. Does not include driver, passenger, payload, body or special equipment.

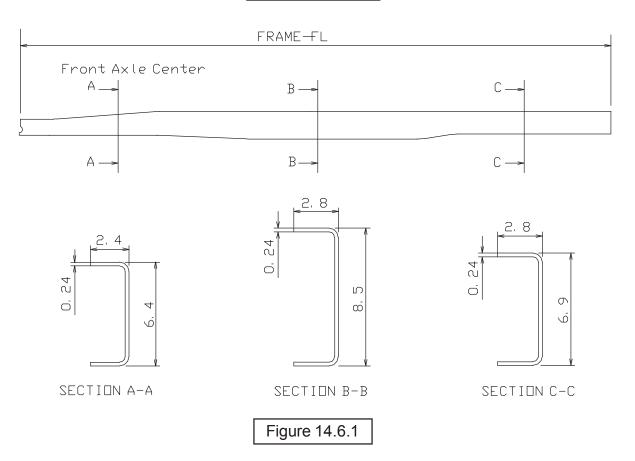

Maximum Payload Weight is the allowed maximum for equipment, body, payload, driver and passengers and is calculated by subtracting chassis curb weight from the GVWR.

	Weights for Options							
RPO (1)	Option Description	Front / Rear Lbs.						
9D2	Speed Limited to 58 MPH	0/0						
9C2	Speed Limited to 65 MPH	0/0						
9E2	Speed Limited to 68 MPH	0/0						
ATG	Keyless entry	3/0						
9B9	Speed Limited to 70 MPH	0/0						
K05	Block Heater (cord)	1/0						
KPG	Locking DEF tank cap	0/0						
UIZ	AM/FM/CD Radio with Ax input/USB port and Bluetooth	0/0						
KQN	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0						
DB6	Heated dual remote control mirrors (15" head)	3/0						
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer	19 / 0						
KPK	Engine Oil Pan Heater (120v 300w)	2/0						
KPJ	Engine emergency shutdown system HWT, LWL, LOP (4)	0/0						
PTO	PTO Enable Switch and Engine Idle Up Switch recommended for PTO and Idle applications only (2)	1/0						
DB8	Heated Mirrors	1/0						
TBD	Mirror Bracket for 102" wide body	1/0						
9W8	Seat covers crew cab	9/2						
IX2	Rear Body Dome Lamp Switch (6)	1/0						
UL5	Delete Standard AM/FM/CD Radio	3/0						
KQJ	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0						
UZF	Back up alarm	0/2						
V22	Chrome Grille	1/0						

	Weights for Options	
RPO (1)	Option Description	Front / Rear Lbs.
9D2	Speed Limited to 58 MPH	0/0
9C2	Speed Limited to 65 MPH	0/0
9E2	Speed Limited to 68 MPH	0/0
ATG	Keyless entry	3/0
9B9	Speed Limited to 70 MPH	0/0
K05	Block Heater (cord)	1/0
KPG	Locking DEF tank cap	0/0
UIZ	AM/FM/CD Radio with Ax input/USB port and Bluetooth	0/0
KQN	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0
DB6	Heated dual remote control mirrors (15" head)	3/0
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer	19 / 0
KPK	Engine Oil Pan Heater (120v 300w)	2/0
KPJ	Engine emergency shutdown system HWT, LWL, LOP (4)	0/0
PTO	PTO Enable Switch and Engine Idle Up Switch recommended for PTO and Idle applications only (2)	1/0
DB8	Heated Mirrors	1/0
TBD	Mirror Bracket for 102" wide body	1/0
9W8	Seat covers crew cab	9 / 2
IX2	Rear Body Dome Lamp Switch (6)	1/0
UL5	Delete Standard AM/FM/CD Radio	3/0
KQJ	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0
UZF	Back up alarm	0/2
V22	Chrome Grille	1/0

⁸ 14.5

Frame and Crossmember Specifications


F: -		4.4	_ 1	
FIG	ure	14	.อ. เ	

Wheelbase	Frame	Crossmember Type/Location					
	Thick	В	С	D	Е	F	G
150.0	0.24	28.3	7.9	AA 465	BB 57.9	CC 24.2	DD 33.8
176.0	0.24	28.3	7.9	AA 46.5	BB 74.4	CC 24.2	DD 33.8

Figure 14.5.2

⁸ 14.6

Frame Chart

Wheelbase	Frame FL	Frame Thickness
150.0	223.8	0.24 + 0.18
176.0	249.8	0.24 + 0.18

Figure 14.6.2

4500HD, 5500HD Diesel Standard Crew Cab Top View

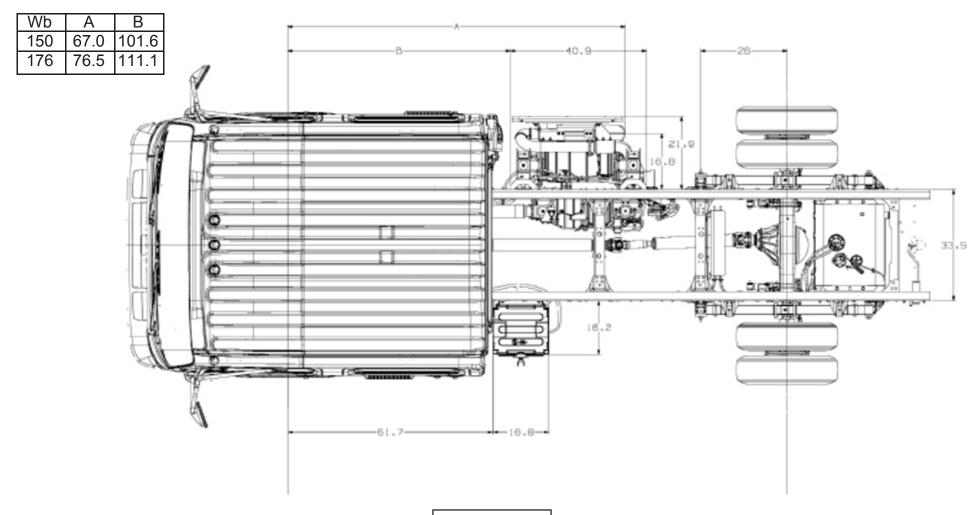


Figure 14.7.1

4500HD, 5500HD Diesel Standard Crew Cab Left Side View

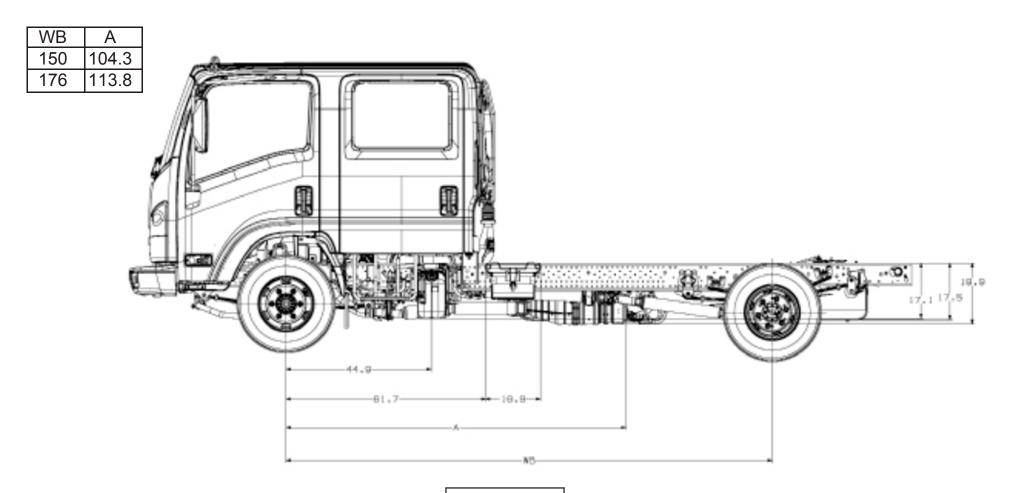


Figure 14.8.1

4500HD, 5500HD Diesel Standard Cab Right Side View

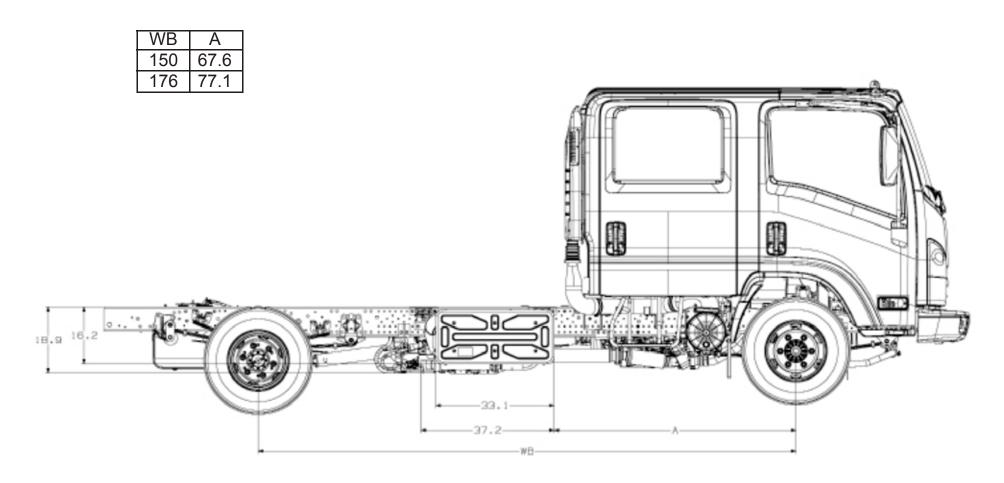
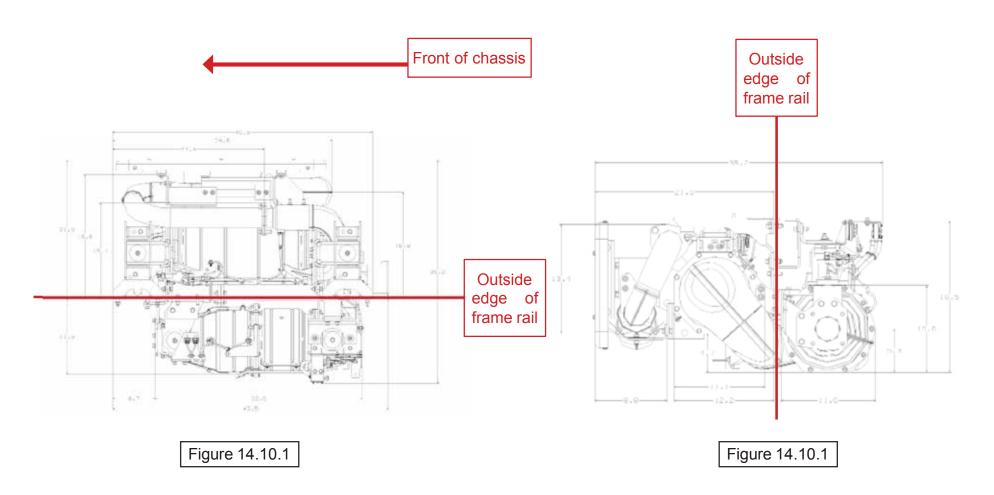



Figure 14.9.1

SCR / DPF 4HK1-TC

14.11

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase

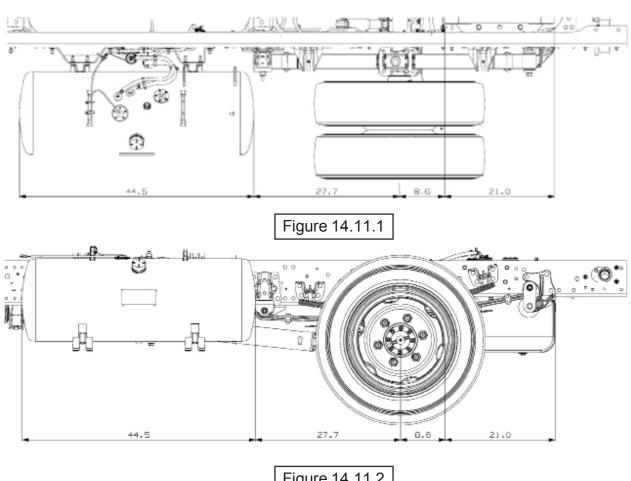


Figure 14.11.2

Center of Gravity



Figure 14.12.1

The center of gravity of the completed vehicle with a full load should not exceed 63 inches above ground level for the 14,500 lbs. and 17,950 lbs. GVWR, and must be located horizontally between the centerlines of the front and rear axles.

NOTE: The Final Manufacturer must ensure that the combined vertical center of gravity of the chassis, body, and available payload at full GVW does not exceed the maximum vertical center of gravity outlined in the Chevrolet LCF Incomplete Vehicle Document and the GM Upfitter site.

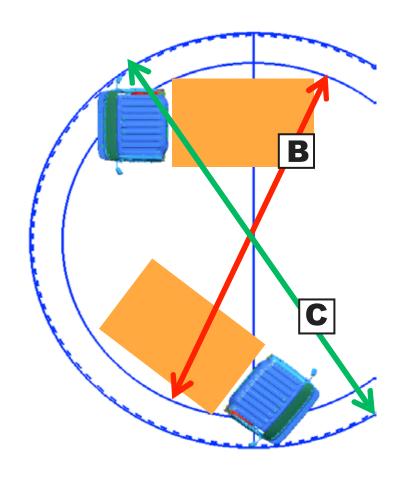
The maximum dimensions for a body installed on the LCF Series chassis are 102 inches wide (outside*) by 91 inches high (inside). Any larger body applications must be approved by GM Upfitter Engineering. Contact us on gmupfitter.com.

^{*} With 102 inches wide mirror brackets installed in place of standard mirror brackets

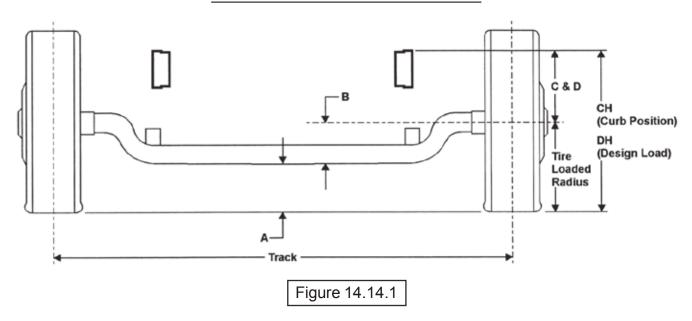
[₩] 14.13

Turning Diameters

TURNING DIAMETERS


The LCF Series Diesel steering also features a 46.50 inside wheel cut angle. This, coupled with the integral power steering, makes the LCF Series Diesel an extremely maneuverable truck.

B=MINIMUM TURNING DIAMETER CURB TO CURB


C=MINIMUM TURNING DIAMETER WALL TO WALL

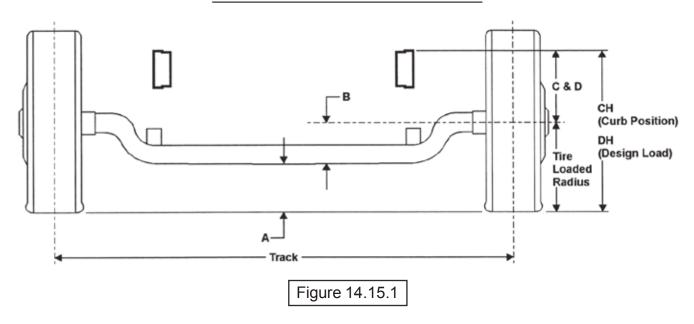
Turning Diameters (design value)

WB	В	C
	curb to curb	(ft. wall to wall (ft.)
109.0	32.8	38.7
132.0	40.0	44.9
150.0	45.3	50.2
176.0	52.5	58.1
200.0	61.0	67.2
212.0	66.0	73.0

Front Axle Chart 4500HD

Formulas for calculating height dimensions:

A = Tire Loaded Radius - B


C = Centerline of Axle to Top of Frame Rail at Curb Position
D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius
DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	А	В	С	D	СН	DH	Track	Tire R	Radius
										Unload	Load
215/85R 16E	14,500 lbs.	5,360 lbs.	7.5	6.6	11.9	11.7	26.5	25.8	65.5	14.6	14.1

Figure 14.14.2

Front Axle Chart 5500HD

Formulas for calculating height dimensions:

A = Tire Loaded Radius - B

C = Centerline of Axle to Top of Frame Rail at Curb Position
D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius
DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	Α	В	С	D	СН	DH	Track	Tire R	ladius
										Unload	Load
225/70R 19.5F	17,950 lbs.	6,830 lbs.	8.6	6.6	12.3	11.5	28.4	26.7	65.5	16.1	15.24

Figure 14.15.2

Rear Axle Chart 4500HD

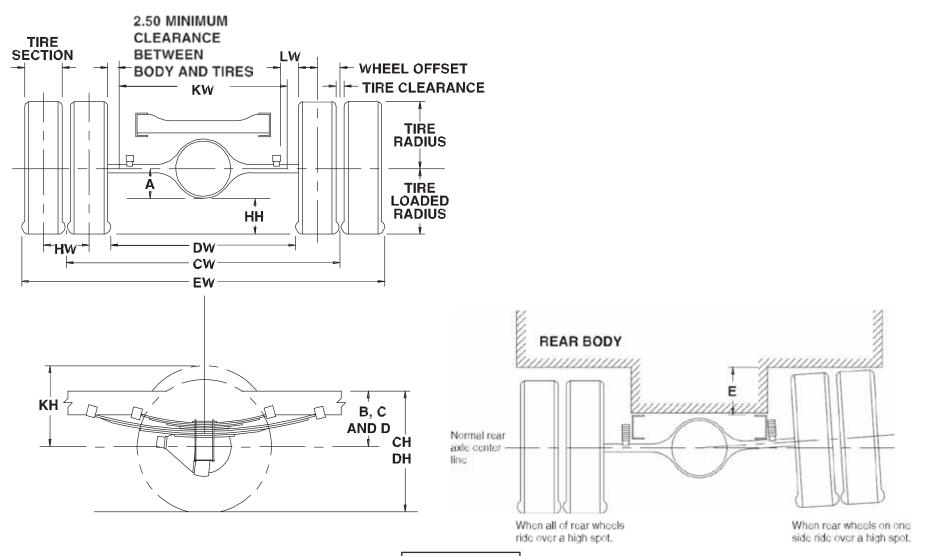


Figure 14.16.1

[₩] 14.17

Definitions

	<u> </u>	THE CHO
		Rear Frame Height:
Centerline of axle to bottom of axle bowl.	DH	Vertical distance between the normal top of frame rail and the ground-line
		through the centerline of the rear axle at design load.
Centerline of axle to top of frame rail at metal-to-metal position.	DW	Minimum distance between the inner surfaces of the rear tires.
Centerline of axle to top of frame rail at curb position.	EW	Maximum Rear Width:
		Overall width of the vehicle measured at the outermost surface of the rear tires.
Centerline of axle to top of frame rail at design load.		Rear Tire Clearance:
	НН	Minimum clearance between the rear axle and the ground-line.
Rear Tire Clearance:		Dual Tire Spacing:
Minimum clearance required for tires and chain measured from the		Distance between the centerlines of the minimum distance required for tire bounce
top of the frame at the vehicle centerline of the rear axle, when rear	HW	as measured from the centerline of the rear axle and the top of the rear tire when
wheels on one side ride over a high spot.		one wheel rides over a high spot.
Rear Frame Height:		Track Dual Rear Wheel Vehicle:
Vertical distance between the normal top of frame rail and the	CW	Distance between the centerlines of the dual wheels measured at the ground-line.
ground-line through the centerline of the rear axle at curb		
position.		
Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance	'	See Chart for values.
	Centerline of axle to bottom of axle bowl. Centerline of axle to top of frame rail at metal-to-metal position. Centerline of axle to top of frame rail at curb position. Centerline of axle to top of frame rail at design load. Rear Tire Clearance: Minimum clearance required for tires and chain measured from the top of the frame at the vehicle centerline of the rear axle, when rear wheels on one side ride over a high spot. Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at curb position.	Centerline of axle to bottom of axle bowl. Centerline of axle to top of frame rail at metal-to-metal position. Centerline of axle to top of frame rail at curb position. EW Centerline of axle to top of frame rail at design load. HH Rear Tire Clearance: Minimum clearance required for tires and chain measured from the top of the frame at the vehicle centerline of the rear axle, when rear wheels on one side ride over a high spot. Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at curb position.

Figure 14.17.1

	Formulas for Calculating Rear Width and Height Dimensions									
CW	= Track	НН	= Tire loaded radius – A							
СН	= Tire loaded radius + C	JH	= KH – B							
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches							
DW	= Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches							
ΕW	= Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs							

Figure 14.17.2

NOTE: Track and overall width may vary with optional equipment.

Tire	GAWR	Track CW	Α	В	С	D	E
215/85R-16E	9,880 lbs.	65.0	6.5	9.3	15.3	13.0	7.8

Figure 14.17.3

Rear Axle Chart 5500HD

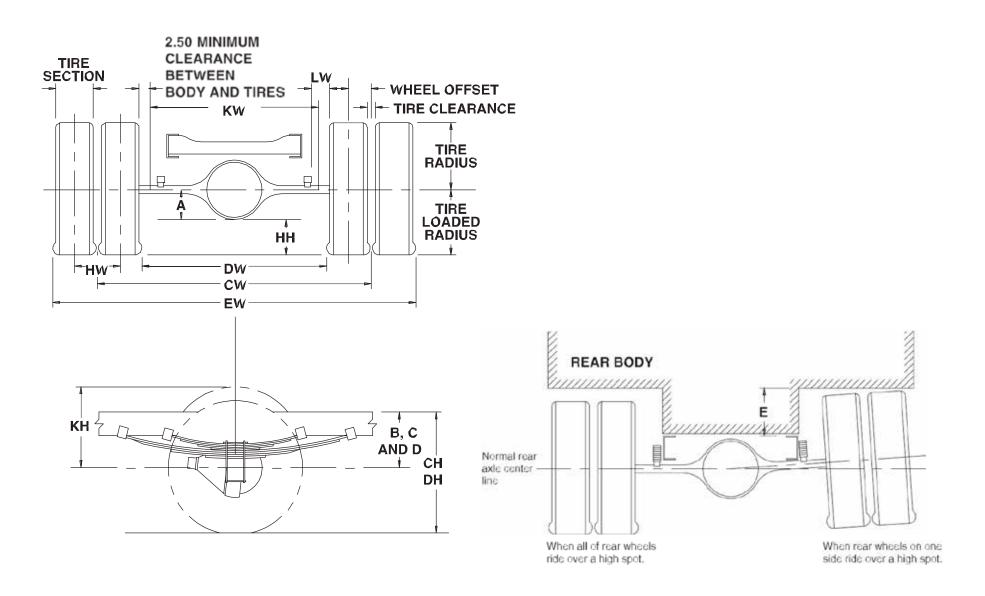


Figure 14.18.1

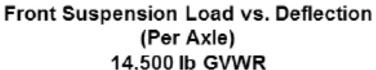
[₩] 14.19

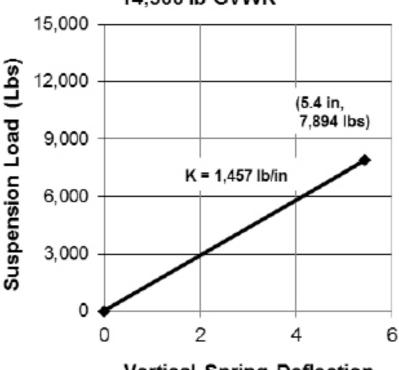
Definitions

	<u> </u>	THE CHO
		Rear Frame Height:
Centerline of axle to bottom of axle bowl.	DH	Vertical distance between the normal top of frame rail and the ground-line
		through the centerline of the rear axle at design load.
Centerline of axle to top of frame rail at metal-to-metal position.	DW	Minimum distance between the inner surfaces of the rear tires.
Centerline of axle to top of frame rail at curb position.	EW	Maximum Rear Width:
		Overall width of the vehicle measured at the outermost surface of the rear tires.
Centerline of axle to top of frame rail at design load.		Rear Tire Clearance:
	НН	Minimum clearance between the rear axle and the ground-line.
Rear Tire Clearance:		Dual Tire Spacing:
Minimum clearance required for tires and chain measured from the		Distance between the centerlines of the minimum distance required for tire bounce
top of the frame at the vehicle centerline of the rear axle, when rear	HW	as measured from the centerline of the rear axle and the top of the rear tire when
wheels on one side ride over a high spot.		one wheel rides over a high spot.
Rear Frame Height:		Track Dual Rear Wheel Vehicle:
Vertical distance between the normal top of frame rail and the	CW	Distance between the centerlines of the dual wheels measured at the ground-line.
ground-line through the centerline of the rear axle at curb		
position.		
Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance	'	See Chart for values.
	Centerline of axle to bottom of axle bowl. Centerline of axle to top of frame rail at metal-to-metal position. Centerline of axle to top of frame rail at curb position. Centerline of axle to top of frame rail at design load. Rear Tire Clearance: Minimum clearance required for tires and chain measured from the top of the frame at the vehicle centerline of the rear axle, when rear wheels on one side ride over a high spot. Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at curb position.	Centerline of axle to bottom of axle bowl. Centerline of axle to top of frame rail at metal-to-metal position. Centerline of axle to top of frame rail at curb position. EW Centerline of axle to top of frame rail at design load. HH Rear Tire Clearance: Minimum clearance required for tires and chain measured from the top of the frame at the vehicle centerline of the rear axle, when rear wheels on one side ride over a high spot. Rear Frame Height: Vertical distance between the normal top of frame rail and the ground-line through the centerline of the rear axle at curb position.

Figure 14.19.1

	Formulas for Calculating Rear Width and Height Dimensions									
CW	= Track	НН	= Tire loaded radius – A							
СН	= Tire loaded radius + C	JH	= KH – B							
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches							
DW	= Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches							
EW	= Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs							

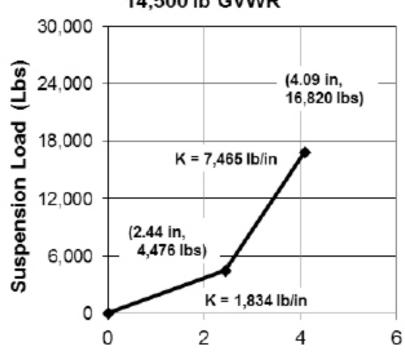

Figure 14.19.2


NOTE: Track and overall width may vary with optional equipment.

Tire	GAWR	Track CW	Α	В	С	D	E
225/70R-19.5F	12,980 lbs.	65.0	7.7	9.3	15.5	13.4	8.4

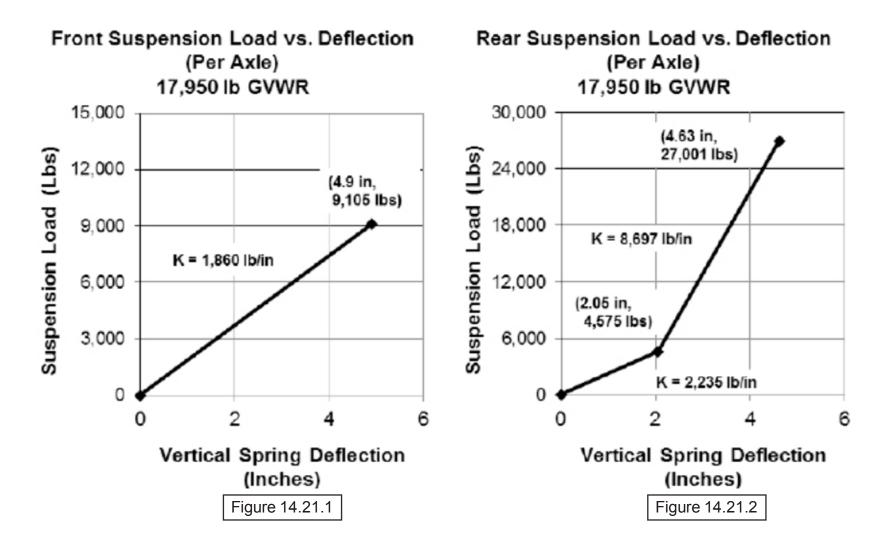
Figure 14.19.3

4500HD Suspension Deflection Charts



Vertical Spring Deflection (Inches)

Figure 14.20.1


Rear Suspension Load vs. Deflection (Per Axle) 14,500 lb GVWR

Vertical Spring Deflection (Inches)

Figure 14.20.2

5500HD Suspension Deflection Charts

14.22

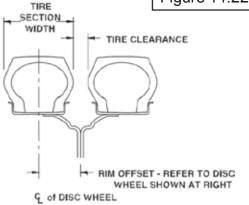
Tire and Disc Wheel Chart 4500HD

		•
•	•	

	Tire Lo	oad Limit and Cold	Inflation Pressures	S	Maximum Tire Load		
Tire Size	S	ingle	Dual		Front	Rear	GVWR (Lbs.)
	Lbs.	PSI	Lbs.	PSI	2 Single	4 Dual	
215/85R 16E	2,680	80	2,470	80	5,360	9,880	14,500

Figure 14.22.1

			Tir	Linioaded		Tire Coefier		Decima Dim
Tire Size	GVWR (Lbs.)	Lo	oaded			Tire Section Width	Tire Clearance	Design Rim Width
		Front	Rear	Front	Rear	WIGHT		Width
215/85R 16E	14,500	14.1	14.1	14.6	14.6	8.2	18	6.0


Figure 14.22.2

Disc Wheel

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size•	Rear Stud Size•	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickness	Rim Type	Material Mfg.
16.6 x 6 K	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	289 ftlb. (392 N•m)	6.46	5.0	0.39	5º DC	Steel TOPY

*O.D. Wrench Sizes

Figure 14.22.3

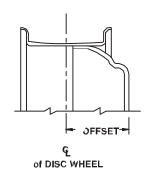


Figure 14.22.4

Note: Dimensions in inches

Revision: 11/30/2017

14.23

Tire and Disc Wheel Chart 5500HD

Tire

	Tire L	oad Limit and Cold	Inflation Pressures	S	Maximum Tire Load	l Limits (Ibs.)	
Tire Size	S	ingle	Dual		Front	Rear	GVWR (Lbs.)
	Lbs.	PSI	Lbs.	PSI	2 Single	4 Dual	
225/70R 19.5F	3,450	90	3,245	90	6,900	12,980	17,950

Figure 14.23.1

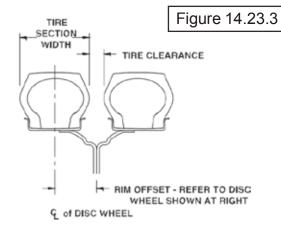

			Tire	e Radius		Time Continu		Design Dim
Tire Size	GVWR (Lbs.)	Lo	oaded	Unloaded		Tire Section Width	Tire Clearance	Design Rim Width
		Front	Rear	Front	Rear	WIGHT		Width
225/70R 19.5F	17,950	14.93	14.98	16	16	8.7	1.3	6.0

Figure 14.23.2

Disc Wheel

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size•	Rear Stud Size•	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickness	Rim Type	Material Mfg.
19.5x 6.00	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	325 ftlb. (440 N•m)	6.46	5.0	0.35	15° DC	Steel TOPY

*O.D. Wrench Sizes

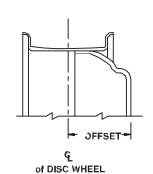
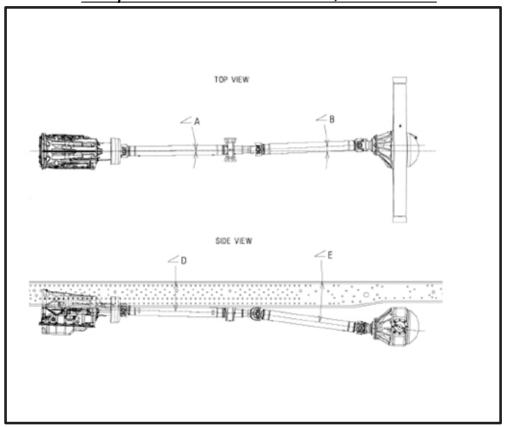



Figure 14.23.4

Note: Dimensions in inches

Revision: 11/30/2017

Propeller Shaft 4500HD, 5500HD

4500HD

WheelBase	Тор	View		(Side Vie	W
(in.)	∠A	∠B	∠D	∠E	Trans.	Rear Axle
150	0°	2.7°	2.6°	8.0°	2.5°	2.5°
176	0°	1.8°	2.1°	5.4°	2.5°	2.5°

Figure 14.24.2

Figure 14.24.1

WheelBase	Top View		op View Side View				
(in.)	∠A	∠B	∠D	∠E	Trans.	Rear Axle	
150	0°	3.2°	2.6°	8.0°	2.5°	2.7°	
176	0°	2.2°	2.1°	5.6°	2.5°	2.7°	

5500HD

Figure 14.24.3

Note: 1. Angles provided in table are relative to the frame angle. Please take this into consideration for service measurements.

^{2.} Driveline angles are based on the chassis curb weight which includes standard fuel but no driver, body, or payload

Automatic Transmission

	4500HD	
Trans. Type	Transmission	
Wheel base	150	176
No. of Shafts	2	2
Shaft #1 O.D.	3.25"	3.25"
Thickness	0.0906"	0.0906"
Length	34.25"	43.74"
Type	В	В
Shaft #2 O.D.	3.25"	3.25"
Thickness	0.0906"	0.0906"
Length	34.17"	50.71"
Туре	С	С

	5500HD						
Trans. Type	. Type 6 Automatic. Transmission						
Wheelbase	150	176					
No. of Shafts	2	2					
Shaft #1 O.D.	3.54	3.54					
Thickness	0.126	0.126					
Length	40.24	49.69					
Type	В	В					
Shaft #2 O.D.	3.54	3.54					
Thickness	0.126	0.126					
Length	36.53	52.93					
Type	C	С					

Figure 14.25.1

Figure 14.25.2

Туре	Description	Illustration
Туре В	1st shaft in 2-piece driveline	
Type ℓ	2nd shaft in 2-piece driveline	

Figure 14.25.3

Brake System Diagram 14,500 GVW

Vacuum Over Hydraulic

Please refer to introduction section of book for antilock system cautions and wheelbase modification requirements.

Legend for 3500, 3500HD, 4500, 4500HD, 4500XD

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Vacuum Pump
- (4) Check Valve
- (5) Exhaust Brake Valve
- (6) Magnetic Valve
- (7) Check Valve (One-way Valve)
- (8) Vacuum Tank
- (9) 4-Way Connector
- (10) With Metering Valve
- (11) W/O Metering Valve
- (12) Brake Fluid Reservoir
- (13) Electric Vacuum Pump
- (14) Master Cylinder
- (15) Vacuum Booster (Servo Unit)
- (16) Front Wheel Cylinder

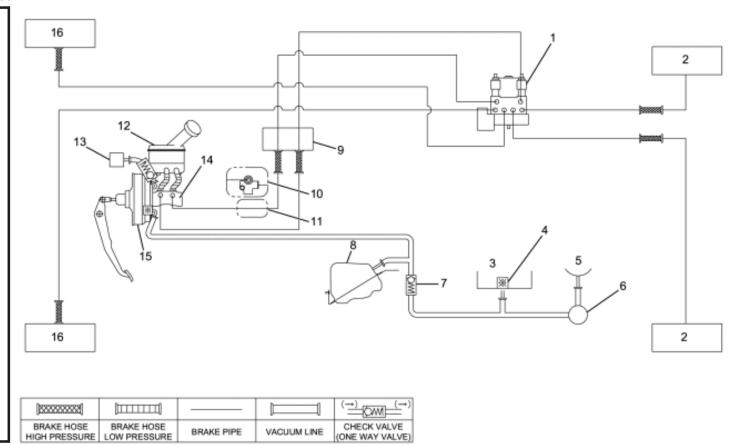
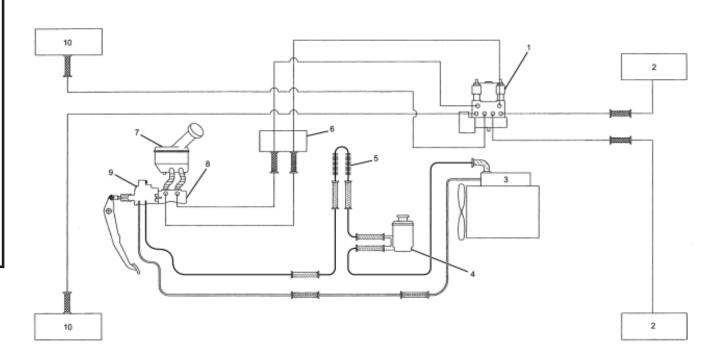


Figure 14.26.1

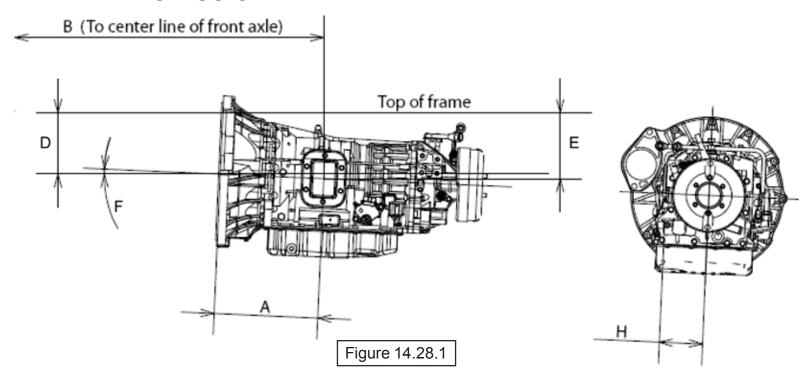

Brake System Diagram 17,950 GVW

Full Hydraulic

Please refer to introduction section of book for antilock system cautions and wheelbase modification requirements.

Legend for 5500HD, 5500XD Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Hydraulic Booster Oil Pump
- (4) Hydraulic Booster Reservoir
- (5) Cooler Pipe
- (6) Pipe Connector
- (7) Brake Fluid Reservoir
- (8) Master Cylinder
- (9) Hydraulic Booster Unit
- (10) Front Wheel Cylinder



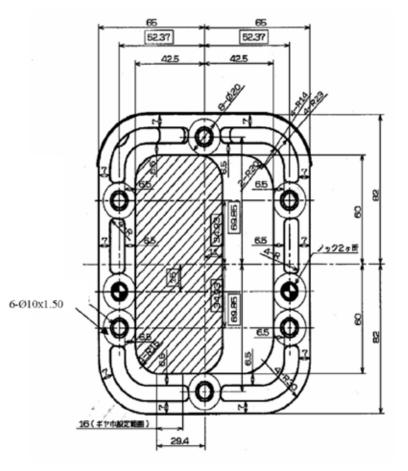
[30000000000]	[300000000	annan	
BRAKE HOSE HIGH PRESSURE	BRAKE HOSE LOW PRESSURE	BRAKE PIPE		HYDRAULIC HOSE (RETURN/SUCTION)	HYDRAULIC PIPE (RETURN/SUCTION)

Figure 14.27.1

PTO Location, Drive Gear and Opening Information

AUTOMATIC TRANSMISSION

Trans.	Opening	Bolt	Α	В	С	D	Е	F	Н	PTO Drive Gear	Ratio of PTO Drv.	No. of	Pitch	Helix	Max. Output Torque
	Location	Pattern								Location	Gear Spd. to Eng. Spd.	Teeth		Angle	
Aisin (1)	Left	(Dr2)	12.35	36.89	0	7.85	7.31	2.5°	5.16	PTO Gear	1:1 with turbine	69	N/A	00	134 lbsft. @ 1,700 RPM


Figure 14.28.2

Opening Diagram

Aisin A460 Automatic Torque Converter Lock Up Function.

In either the Stationary Preset PTO Mode or Stationary Variable PTO Mode, when engine rpm exceeds 1200 RPM, the torque converter will lock up. The engine rpm can not be modified and the lockup function cannot be turned off. Please not that with PTO applications that operate around 1200 RPM, the transmission software holds the torque converter in lockup until engine speed falls below 1100 RPM

The lock up function will cancel if the transmission shift lever is moved from the park or neutral positions which will remove the trasmission from the stationary mode.

Additional PTO Functions

For certain applications the Automatic regeneration function can be inhibited (Example Airport Ground Support vehicles).

For certain applications the Automatic regeneration function can be enabled in the PTO stationary mode (Example Lawn care and carpet cleaning).

For certain applications the Automatic regeneration function can be enabled in the PTO mobile mode (Example Line painting).

Please refer to the PTO section of the BBG (section 17) for further details.

Figure 14.29.1

⁸ 14.30

Diesel Fuel Fill

Installation Instructions

- 1. Disconnect battery.
- 2. Loosen hose from the tie downs. Remove caps from plate on rail.
- 3. Install hoses onto the plate.
- 4. Extend hose out from the driver side of the rail to body rail.
- 5. The filler neck must be mounted to allow the fill plate bracket to be parallel to the frame horizontal.
- 6. Cover with protector wrap and secure with tie wraps.
- 7. Filler hose is set for 102 inches outside width body.
- 8. Filler neck (dimension A) must be between 6.85 inches and 8.5 inches above frame.
- 9. Secure the filler plate to the bottom of the body and check for leaks.
- 10. Ensure that fill hose does not sag, creating an area where the fuel could pool in the fill hose.
- 11. Reconnect battery.

Rear View Fuel Fill

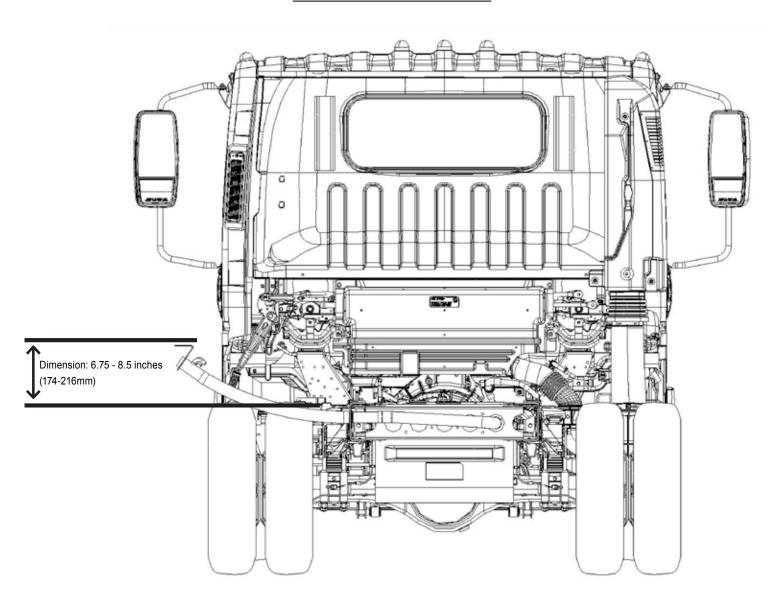
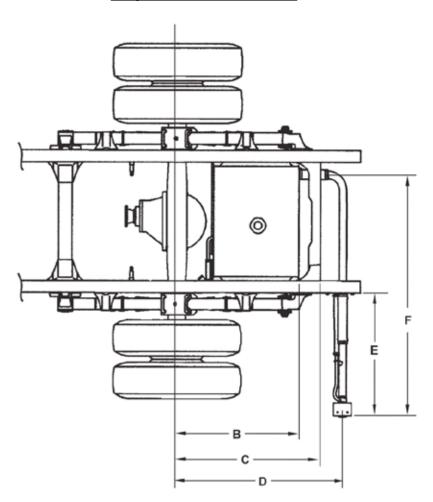



Figure 14.31.1

⁸ 14.32

Top View Fuel Fill

Dimensions:

B = 29.75 inches (756 mm)

C = 34.00 inches (863 mm)

D = 39.29 inches (998 mm)

E = 33.86 inches (860 mm)

F = 59.60 inches (1,514mm)

Figure 14.32.1

"A" Dimensions:

Hose Modification for Various Width Bodies and Fuel Fill Vent Protection

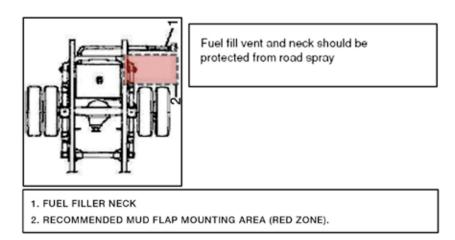
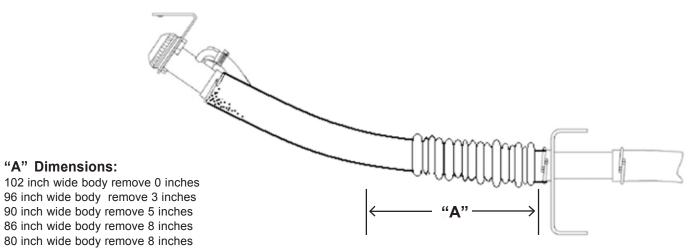



Figure 14.33.1

NOTE: Shorten hose by "A Dimension" based on chart at left.

Figure 14.33.2

Ultra Low Sulfur Diesel Label

Per EPA Title 40, Part 86, 86:007—35(c), The decal illustrated below must be installed on the vehicle. The decal is included in the fuel fill parts box.

> Ultra Low Sulfur Diesel Fuel Only

N' utiliser que du carburant diesel a teneur ultra-faible en soufre

INSTRUCTIONS FOR DECAL PLACEMENT:

- 1. The decal must be placed as close as possible to the fuel inlet and be clearly visible.
- 2. The decal should be placed above or to the side of the fuel cap to avoid corrosion by possible contact with fuel.
- 3. The decal may be placed on aerodynamic fairings, bodies, etc. as long as the decal is clearly visible and in close proximity to the fuel inlet.
- 4. For installed bodies that have a fuel door, the decal should be placed above or to the side of the fuel door.

Thoroughly clean the area of all grease, dirt, etc. before application of the decal. Apply the decal at room temperature, 65° to 75° F.

Figure 14.34.1

Through the Rail Fuel Fill Frame Hole

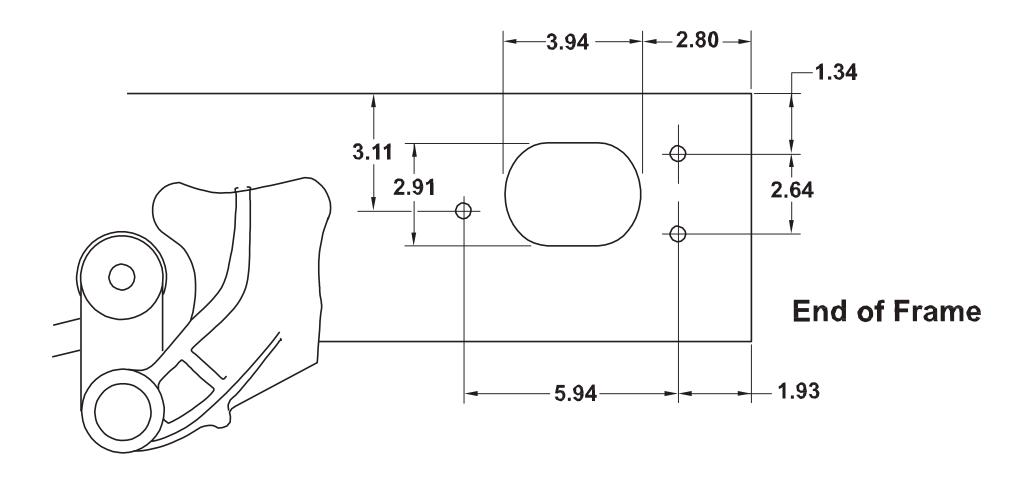


Figure 14.35.1

LCF-Diesel Fuel Filler Kit Instructions

Please review these instructions prior to installation of the fuel filler kit.

PARTS KIT: Fuel filler kit shown below is used for 14,500 lb and higher GVWR chassis 4500HD, 4500XD, 5500HD, 5500XD. Parts list is shown in *Figure 14.36.2*. Parts photos are shown in *Figure 14.36.1*.

	FUEL FILLER KIT								
ITEM #	PART NAME	PART#	QTY						
1	HOSE: FUEL FILLER NECK	See Dealer	1						
2	HOSE:FUELFILLER	See Dealer	1						
3	CAP: FILLER	See Dealer	1						
4	HOSE: ROLL-OVER VALVE	See Dealer	1						
5	NECK ASM: FUEL FILLER	See Dealer	1						
6	CLIP: JOINT	See Dealer	4						
7	PROTECTOR: FILLER HOSE	See Dealer	1						
8	CLIP: BAND, HOSE FIXING	See Dealer	2						
9	CLIP: RUBBER, HOSE	See Dealer	1						
10	BRACKET: FILLER NECK	See Dealer	1						
11	SCREW:FILLERNECK	See Dealer	3						
12	CAUTION PLATE	See Dealer	1						
13	SHUTTER: FUEL TANK	See Dealer	1						

Figure 14.36.2

Figure 14.36.1

Installation Instructions and Considerations:

The fuel tank shutter valve (13) was a new component for 2011 model year. This component is meant to improve fuel splash-back performance of the fuel system. This valve (13) is on the inlet (outboard side) of the fuel filler neck bulkhead assemble that is bolted to the left hand frame rail as shown in *Figure 14.37.1*. This plastic valve snaps into place in the inlet of the frame mounted fuel pipe. The valve should be installed so that the plastic clip is at the top of the valve, so that the flap door opens up, as shown in *Figures 14.37.2*.

Figure 14.37.1

The fuel filler hose should be installed flush against the tank. The clamp should be installed between 1/16" and 3/8" from the tank. This is shown in *Figure 14.37.3* below.

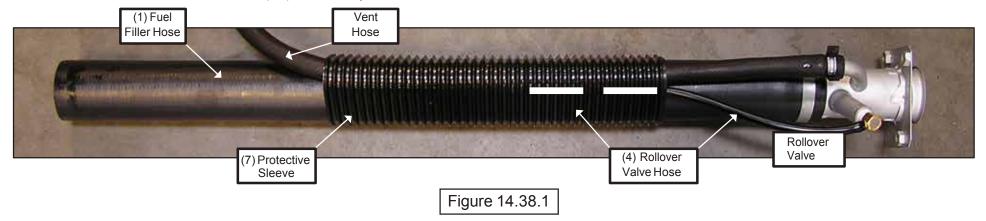



Figure 14.37.3

Roll-Over Valve Tubing

The roll-over valve has a hose attachment that will make this valve less sensitive to water intrusion. In order for the valve to work properly, it is critical that the hose be installed to the rollover valve. The proper assembly of the outer hose is shown in **FIGURE 14.38.1**.

Filler Neck Installation:

The fuel filler neck (5) must be installed with the proper orientation on the body. The neck should be installed with the roll-over valve pointing upward, with the bottom edge of the neck oriented parallel to the ground, plus 33 to minus 7 degrees. See **FIGURE 14.38.2**. for the proper orientation.

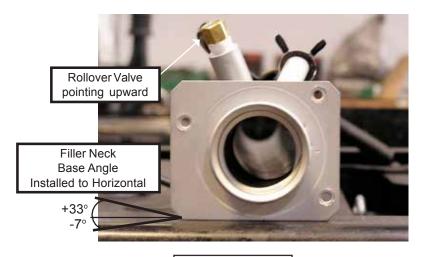


Figure 14.38.2

5500XD Diesel Specification

Model	5500XD						
GVWR	19,500 lbs.						
WB	109 in., 132.5 in., 150 in., 176 in., 200 in., 212 in						
Engine	Isuzu 4-cylinder, in-line 4-cycle, turbocharged, intercooled, direct injection diesel.						
Model/Displacement	4HK1-TC/317 CID (5.19 liters)						
HP(Gross)	215 HP/2500 RPM w auto transmission						
Torque (Gross)	452 lb ft torque/1850 RPM w auto transmission						
Equipment	Dry element air cleaner with vertical intake; 2 rows 564 square in. radiator; 7 blade 20.1in diameter fan with viscous drive.						
	Cold weather starting device and an oil cooler. Engine oil level check switch and light. Engine warning system with audible						
	warning for low oil pressure, high coolant temperature, and low coolant level. Engine cruise control function.						
	Rear engine cover.						
Transmission	Aisin A465 6 speed automatic transmission with fifth and sixth gear overdrive with lock up in 2nd, 3rd, 4th, 5th and 6th, PTO						
	capability.						
Steering	Integral power steering 18.8-20.9:1 ratio. Tilt and telescoping steering column.						
Front Axle	Reverse Elliot "I" -Beam rated at 7,275 lbs.						
Suspension	Semi-elliptical steel alloy tapered leaf springs with stabilizer bar and shock absorbers.						
GAWR	7,275 lbs.						
Rear Axle	Full floating single speed with hypoid gearing rated at 14,550 lbs.						
Suspension	Semi-elliptical steel alloy multi-leaf springs and shock absorbers.						
GAWR	13,660 lbs.						
Wheels	19.5x6.0-K 6 hole disc wheels, painted white.						
Tires	225/70R-19.5E (12 pr) LRR (Low Rolling Resistance) tubeless steel belted radials, all season tread front and rear.						
Brakes	Dual circuit power assisted hydraulic service brakes with EBD (Electronic Brake Distribution) system for load						
	proportioning of the brake system front disc and self-adjust outboard mounted drum rear. The parking						
	brake is mechanical, cable actuated, internal expanding drum type, transmission mounted. The exhaust						
	brake is standard and is vacum operated. 4 channell anti-lock brake system.						
Fuel Tank	30 gal. rectangular steel fuel tank mounted in frame rail behind rear axle. Fuel water separator with dash mounted indicator light.						
Frame	Ladder type channel section straight frame rail 33.5 in wide through the total length of the frame. Yield strength 44,000 psi,						
	section modulus 7.20 in ³ . RBM 316,800.						
Cab	All steel low cab forward, BBC 70.9 in, 45° mechanical tilt with torsion assist.						
	TRICOT breathable cloth covered high back driver's seat with two occupant passenger seat.						
Equipment	Dual cab mounted exterior mirrors with integral convex mirror. Tilt and telescoping steering column.						
	Power windows and door locks, floor mats, tinted glass, AM/FM CD stereo radio.						
Electrical	12 Volt, negative ground, dual Delco maintenance free batteries, 750 CCA each, 140 Amp alternator with integral regulator.						
Options	See last page for options.						

NOTE: These selected specifications are subject to change without notice.

Vehicle Weights, Dimensions and Ratings

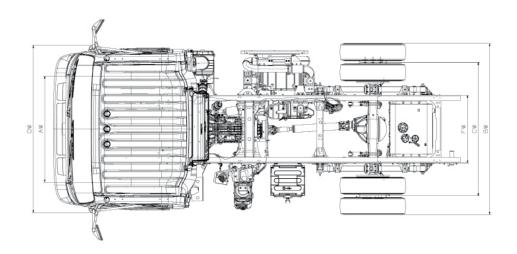


Figure 15.2.1

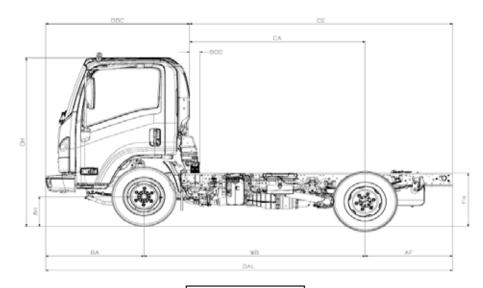


Figure 15.2.2

In-Frame Tank

19,500 lb. GVWR Automatic Transmission Model Chassis Curb and Maximum Payload Weights

Eng. Mode	RPO	WB	Unit	Front	Rear	Total	Payload
T61003	EB4	109.0 in	lb.	4145	2480	6625	12875
T62003	FNJ	132.5 in	lb.	4237	2484	6721	12779
T63003	FWH	150.0 in	lb.	4299	2466	6765	12735
T64003	FNR	176.0 in	lb.	4361	2463	6824	12676
T65003	EMZ	200.0 in	lb.	4524	2662	7186	12314
T66003	EL5	212.0 in	lb.	4534	2672	7206	12294

Side Mounted Tank

19,500 lb. GVWR Automatic Transmission Model

Chassis Curb and Maximum Payload Weights

Model WB Unit Front Rear Total Payload NU4 176.0 in lb. 4496 2340 6836 12664

Vertical Exhaust Option Dimensions:

Variable Chassis Dimensions:

Unit	WB	EFF CA*	EFF CE*	OAL	AF
Inch	109.0	62.5	105.6	200.5	43.1
Inch	132.5	86.0	153.1	224.0	43.1
Inch	150.0	103.5	146.6	241.5	43.1
Inch	176.0	129.5	172.6	267.5	43.1

* Effective CA & CE listed are standard CA or CE less vertical exhaust BOC of 24 inches.

Vertical Exhaust BOC = 24 inches

Variable Chassis Dimensions:

		io Dillicit				Dimen	sionCons	tante	
Unit	WB	CA*	CE*	OAL	AF		Inches		Inches
Inch	109.0	86.5	129.6	200.5	43.1				
			153.1				7.5		83.3
							65.6	CW	65
			170.6			BA	48.3	FW	33.5
Inch	176.0	153.5	196.6	267.5	43.1	BBC	70.7	OH	92.4
Inch	200.0	177.5	220.6	291.5	43.1	BOC	. •	•	
			232.6				7.7	Ovv	81.3
			202.0		.0	FΗ	33.0		

* Effective CA & CE are CA or CE less BOC.

15.3

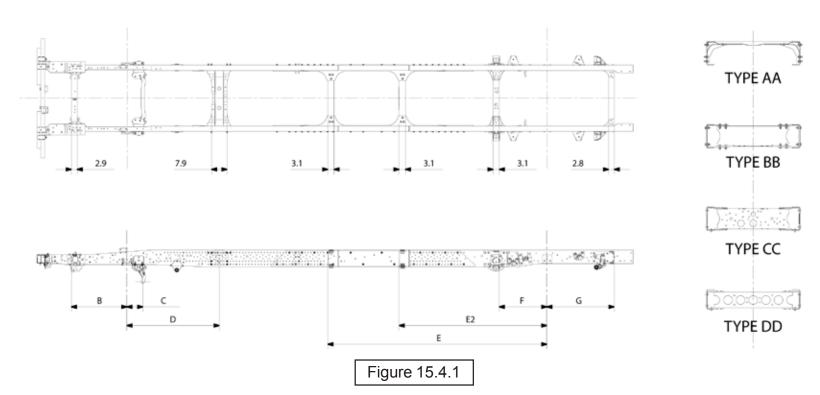
Truck Weight Limits

Truck Weight Limits:

GVWR Designed Maximum 19,500 lbs.

GAWR, Front 7,275 lbs.
GAWR, Rear 13,660 lbs.

Technical Notes:

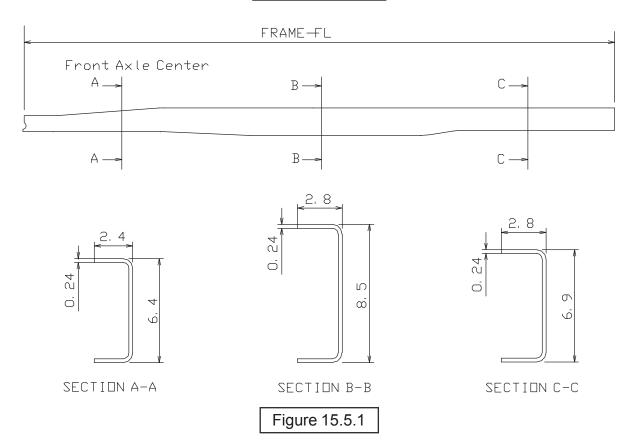

Chassis Curb Weight reflects standard equipment and fuel, but no driver or payload.

Maximum Payload Weight is the allowed maximum for equipment, body, payload and driver and is calculated by subtracting chassis curb weight from the GVWR

	Weights for Options						
RPO (1)							
NPV	Cross rail horizontal DPF/SCR with vertical exhaust (8)	100 / 100					
9D2	Speed Limited to 58 MPH	0/0					
9C2	Speed Limited to 65 MPH	0/0					
9E2	Speed Limited to 68 MPH	0/0					
AIG	Keyless entry	3/0					
9B9	Speed Limited to 70 MPH	0/0					
15K	Suspension seat	18 / 0					
K05	Block Heater (cord)	1/0					
KPG	Locking DEF tank cap	0/0					
UIZ	AM/FM/CD Radio with Ax input/USB port and Bluetooth	0/0					
KQN	Engine Idle Shutdown (Timer set at 5 minutes for engine shutdown)						
DB6	Heated dual remote control mirrors (15" head)	3/0					
IF4	Air Deflector roof mounted (not available in Crew Cab)	64 / 0					
MTE	Fire Extinguisher and Triangle Kit mounted in rear organizer	19 / 0					
KPK	Engine Oil Pan Heater (120v 300w)	2/0					
KPJ	Engine emergency shutdown system HWT, LWL, LOP (4)	0/0					
NLX	33 Gallon Additional Diesel Fuel Tank mounted on LH side 150, 176 wb, std. cab	(7)					
PTO	PTO Enable Switch and Engine Idle Up Switch recommended for PTO and Idle applications only (2)	1/0					
DB8	Heated Mirrors	1/0					
TBD	Mirror Bracket for 102" wide body	1/0					
9W8	Seat Covers Standard Cab (9)	6/0					
IX2	Rear Body Dome Lamp Switch (6)	1/0					
UL5	Delete Standard AM/FM/CD Radio	3/0					
KQJ	Engine Idle Shutdown (Timer set at 3 minutes for engine shutdown)	0/0					
UZF	Back up alarm	0/2					
V22	Chrome Grille	1/0					

⁸ 15.4

Frame and Crossmember Specifications



Wheelbase	Frame						Crossmemb	er Type/Lo	r Type/Location				
	Thickness	В	С)	ı	E	E	2	1	F		G
109	0.24	28.3	7.9	AA	46.5		-		-	CC	24.2	DD	33.8
132.5	0.24	28.3	7.9	AA	46.5	BB	57.5		-	CC	24.2	DD	33.8
150	0.24	28.3	7.9	AA	46.5	BB	57.9		-	CC	24.2	DD	33.8
176	0.24	28.3	7.9	AA	46.5	BB	74.4		-	CC	24.2	DD	33.8
200	0.24	28.3	7.9	AA	46.5	BB	98.4	BB	74.4	CC	24.2	DD	33.8
212	0.24	28.3	7.9	AA	46.5	BB	110.4	BB	74.4	CC	24.2	DD	33.8

Figure 15.4.2

⁸ 15.5

Frame Chart

Wheelbase	Frame FL	Frame Thickness
109.0	182.5	0.24
132.5	206.1	0.24
150.0	223.8	0.24
176.0	249.8	0.24
200.0	273.8	0.24
212.0	285.8	0.24

Figure 15.5.2

5500XD Diesel Standard Cab - Top View

WB	Α	В
109	43.4	78.0
132.5	49.7	84.3
150	43.4	78.0
176	43.4	78.0
200	43.4	78.0
212	43.4	78.0

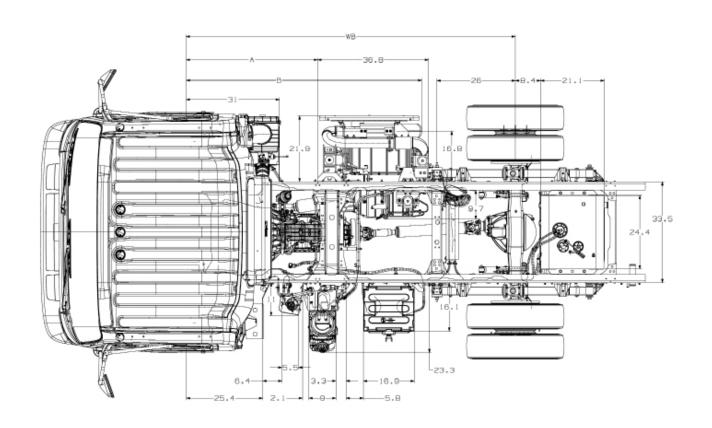


Figure 15.6.1

5500XD Diesel Standard Cab - Left Side View

WB	Α
109	80.7
132.5	87.0
150	80.7
176	80.7
200	80.7
212	80.7

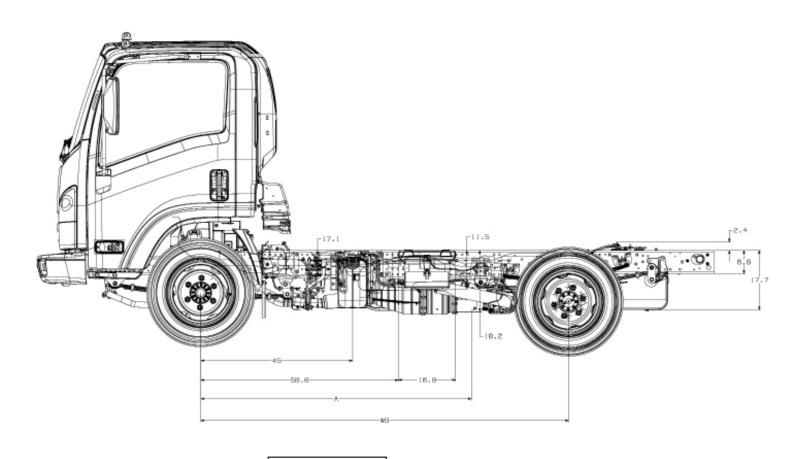


Figure 15.7.1

5500XD Diesel Standard Cab - Right Side View

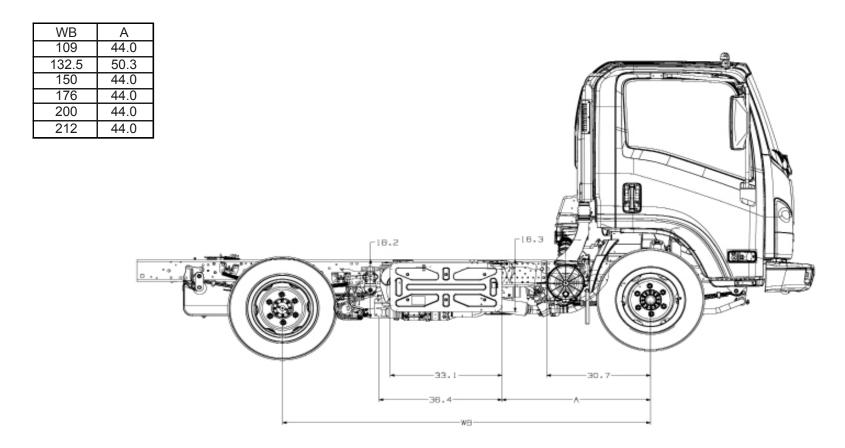


Figure 15.8.1

SCR / DPF 4HK1-TC

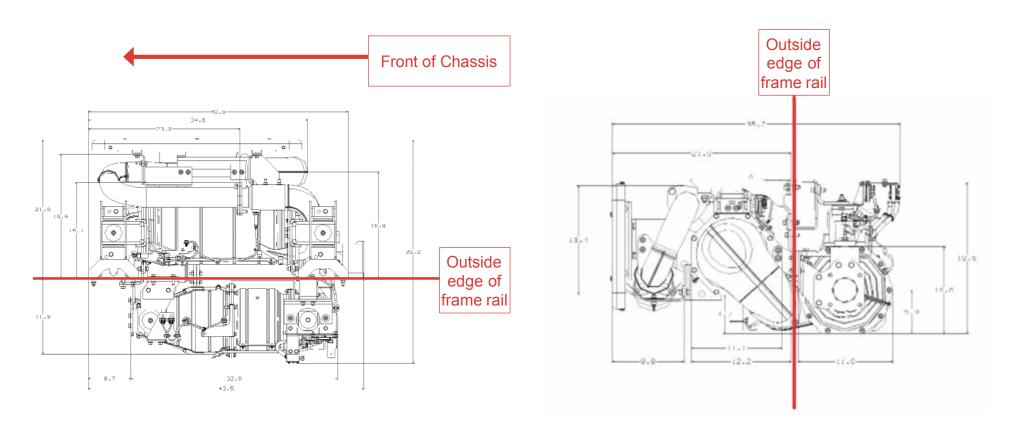


Figure 15.9.1

Figure 15.9.2

⁸ 15.10

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX
Side View 150 Wheelbase

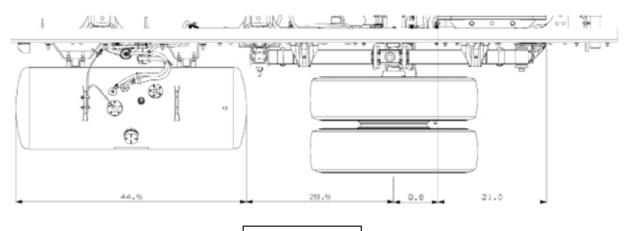


Figure 15.10.1

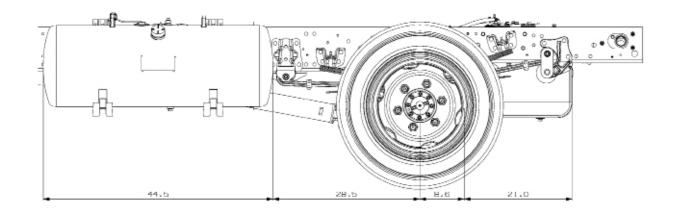


Figure 15.10.2

[₩] 15.11

Option Side Fuel Tank in addition to the Standard In Rail Fuel Tank RPO NLX Side View 176 Wheelbase

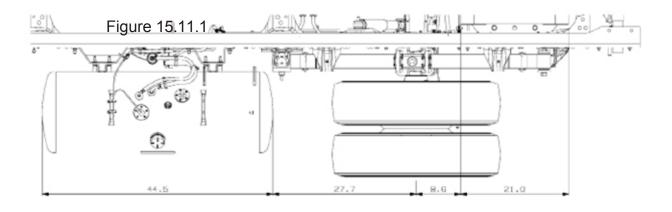


Figure 15.11.1

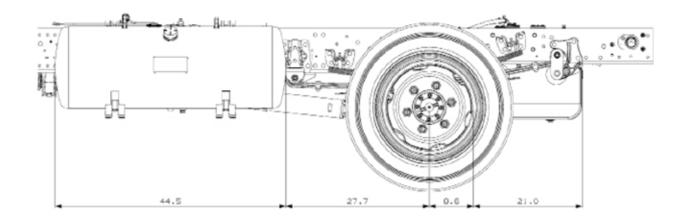


Figure 15.11.2

Option Side Fuel Tank in place of the Standard In Rail Fuel Tank on RPO NL7
Side View 176 Wheelbase

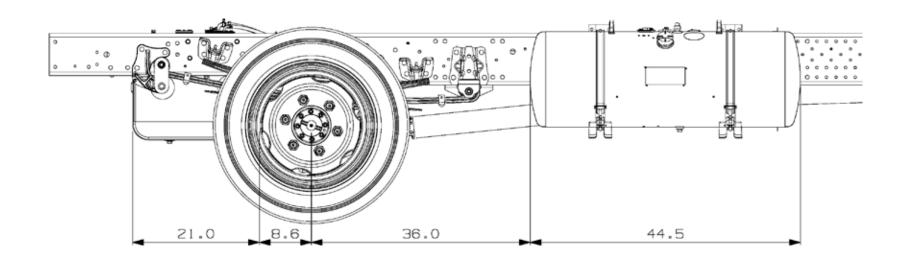


Figure 15.12.1

Optional Side Fuel Tank in addition to the Standard In Rail Fuel tank RPO NLX (150 and 176 wb LH rail only).

Optional Side Fuel Tank replacing standard In Rail Fuel tank RPO NL7

(176 wb only RH rail only)

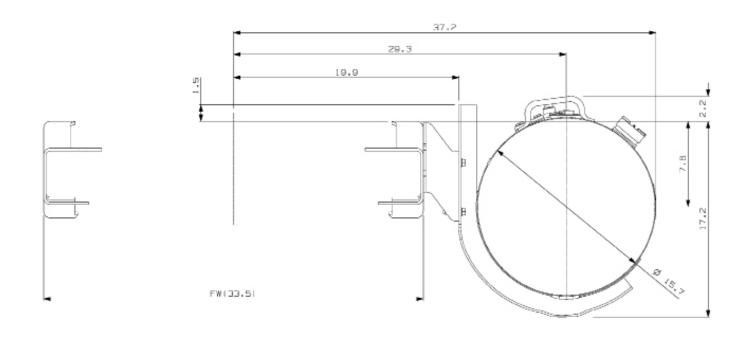


Figure 15.13.1

Cab Tilt

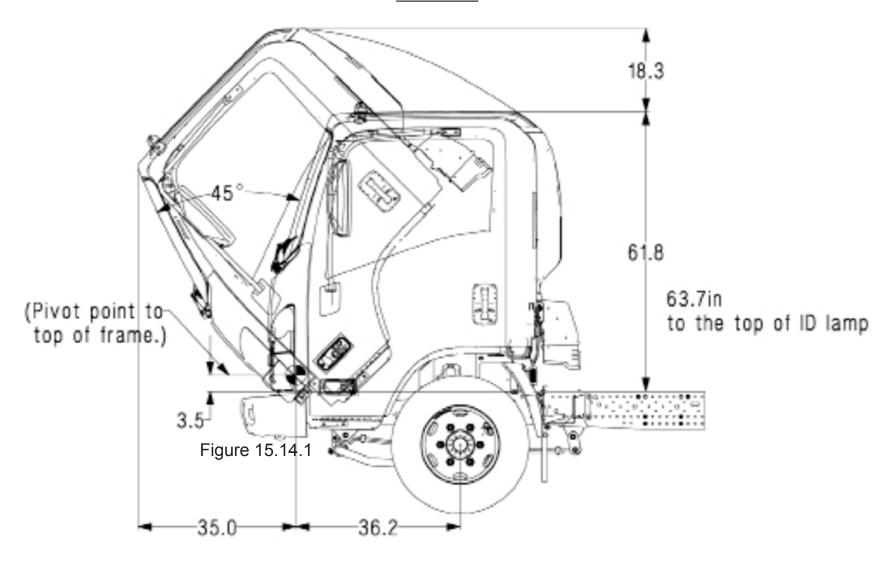
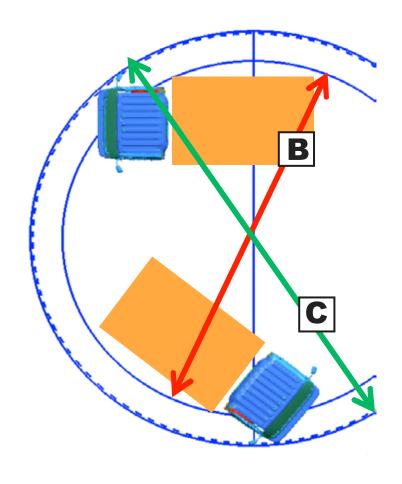


Figure 15.14.1

15.15

Turning Diameters

TURNING DIAMETERS

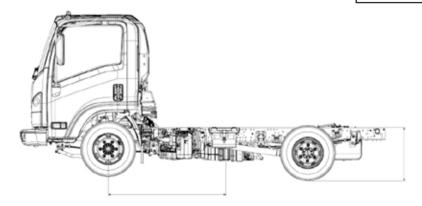

The LCF Series Diesel steering also features a 46.50 inside wheel cut angle. This, coupled with the integral power steering, makes the LCF Series Diesel an extremely maneuverable truck.

B=MINIMUM TURNING DIAMETER CURB TO CURB

C=MINIMUM TURNING DIAMETER WALL TO WALL

Turning Diameters (design value)

WB	В	C
	curb to curb	(ft. wall to wall (ft.)
109.0	32.8	38.7
132.0	40.0	44.9
150.0	45.3	50.2
176.0	52.5	58.1
200.0	61.0	67.2
212.0	66.0	73.0


Center of Gravity

Horizontal and Vertical CG of Chassis							
		Н	Н				
WB	V	in frame	side				
		tank	tank				
110	23.4	38	N/A				
132.5	23.3	44.6	N/A				
150	23.4	49.5	N/A				
176	23.4	61.4	56.7				
200	23.4	73.3	N/A				
212	23.2	85.2	N/A				

Center of Gravity

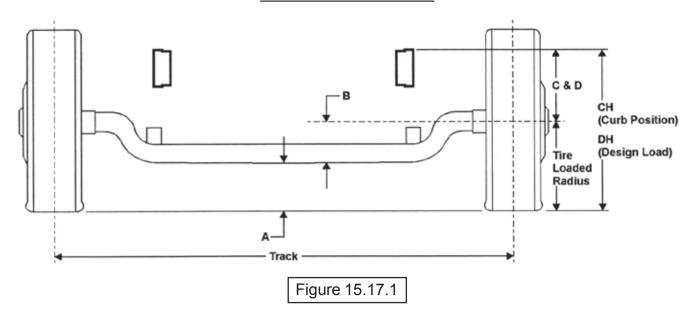
The center of gravity of the chassis cab.

Figure 15.16.1

The maximum vertical center of gravity specified be- low must not be exceeded at maximum GVWR and rated front and rear GAWR. The Center of Gravity (CG) maximum is 63" (1600 mm) above the ground.(LCF Cab Chassis and LCF Stripped Chassis).

Figure 15.16.2

NOTE: The Final Manufacturer must ensure that the combined vertical center of gravity of the chassis, body, and available payload at full GVW does not exceed the maximum vertical center of gravity outlined in the Chevrolet LCF Incomplete Vehicle Document and the GM Body Builders Guide.


The maximum dimensions for a body installed on the N Series chassis are 102 inches wide (outside*) by 91 inches high (inside). Any larger body applications must be approved by GM Upfitters Engineering.

Contact us on gmupfitter.com.

Note: Dimensions in inches

* With 102 inches wide mirror brackets installed in place of standard mirror brackets

Front Axle Chart

Formulas for calculating height dimensions:

A = Tire Loaded Radius – B

C = Centerline of Axle to Top of Frame Rail at Curb Position
D = Centerline of Axle to Top of Frame Rail at Design Load

CH = C + Tire Unloaded Radius
DH = D + Tire Loaded Radius

Tire	GVWR	GAWR	Α	В	С	D	СН	DH	Track	Tire R	Radius
										Unload	Load
225/70R 19.5F	19,500 lbs.	7,275 lbs.	8.3	6.6	12.3	11.5	28.3	26.4	65.5	16	14.91

Figure 15.17.2

Rear Axle Chart

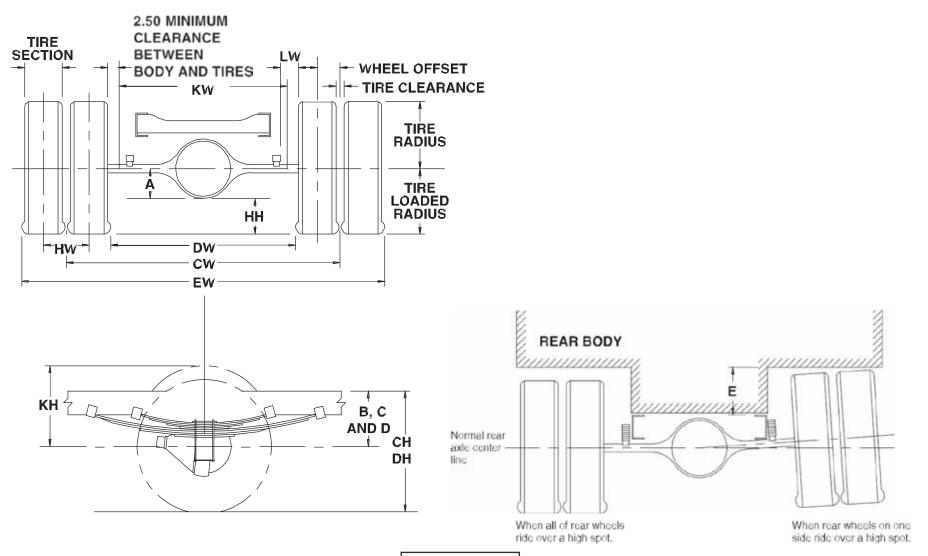


Figure 15.18.1

Definitions

	Definiti	ions	
			Rear Frame Height:
1	Centerline of axle to bottom of axle bowl.	DH	Vertical distance between the normal top of frame rail and the ground-line
			through the centerline of the rear axle at design load.
E	Centerline of axle to top of frame rail at metal-to-metal position.	DW	Minimum distance between the inner surfaces of the rear tires.
	Centerline of axle to top of frame rail at curb position.	EW	Maximum Rear Width:
			Overall width of the vehicle measured at the outermost surface of the rear tires.
	Centerline of axle to top of frame rail at design load.		Rear Tire Clearance:
		НН	Minimum clearance between the rear axle and the ground-line.
	Rear Tire Clearance:		Dual Tire Spacing:
	Minimum clearance required for tires and chain measured from the	HW	Distance between the centerlines of the tires in a set of dual tires.
E	top of the frame at the vehicle centerline of the rear axle, when rear	KW	Tire Bounce Clearance:
	wheels on one side ride over a high spot.		Minimum distance required for tire bounce as measured from the centerline of the
			rear axle and the top of the rear tire when one wheel rides over a high spot.
	Rear Frame Height:		Track Dual Rear Wheel Vehicle:
С	H Vertical distance between the normal top of frame rail and the	CW	Distance between the centerlines of the dual wheels measured at the ground-line.
	ground-line through the centerline of the rear axle at curb position.		
	Tire Section, Tire Radius, Tire Loaded Radius, Tire Clearance	•	See Tire Chart for values.

Figure 15.19.1

	Formulas for Calculating Rear Width and Height Dimensions								
CW	/ = Track	НН	= Tire loaded radius – A						
CH	= Tire loaded radius + C	JH	= KH – B						
DH	= Tire loaded radius + D	KH	= Tire radius + 3.00 inches						
DW	/ = Track + 2 tire sections – tire clearance	KW	= DW – 5.00 inches						
ΕV	= Track + 2 tire sections + tire clearance	LW	= 1.00-inch minimum clearance between tires and springs						

NOTE: Track and overall width may vary with optional equipment.

Figure 15.19.2

Tire	GAWR	Track CW	Α	В	С	D	E
225/70R 19.5F	13,660 lbs.	65.0	7.7	9.3	15.6	13.4	8.4

Figure 15.19.2

5500XD Suspension Deflection Charts

Front Suspension Load vs. Deflection (Per Axle) 19,500 lb GVWR

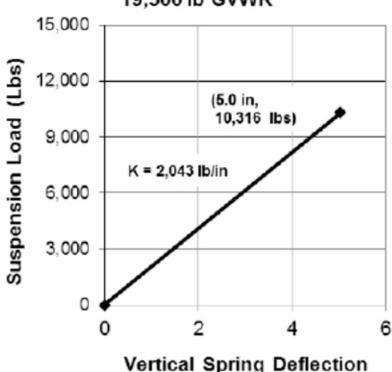
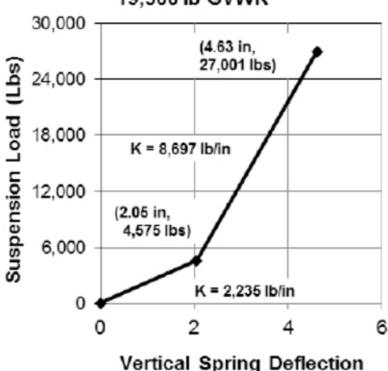



Figure 15.20.1

(Inches)

Rear Suspension Load vs. Deflection (Per Axle) 19.500 lb GVWR

(Inches)

Figure 15.20.2

Tire and Disc Wheel Chart

Tire	ire The and Disc Which Shart									
	Tire Lo	oad Limit and Cold Inf	lation Pressures		Maximum Tire Load L					
Tire Size	Sin	gle	Dual		Front	Rear	GVWR (Lbs.)			
	Lbs.	PSI	Lbs.	PSI	2 Single	4 Dual				
225/70R 19.5F	3,640	95	3,415	95	7,280	13,660	19,500			

Figure 15.21.1

		Tire Radius						
Tire Size	GVWR (Lbs.)	Loaded		Unloaded		Tire Section	Tire Clearance	Design Rim
		Front	Rear	Front	Rear	Width		Width
225/70R 19.5F	19,500	14.91	14.96	16.00	16.00	8.7	1.3	6.0

Disc Wheel Figure 15.21.2

Wheel Size	Bolt Holes	Bolt Circle Dia.	Ft./Rr. Nut Size*	Rear Stud Size*	Nut/Stud Torque Specs.	Inner Circle	Outside Offset	Disc Thickeness	Rim Type	Material Mfg.
19.5 x 6.00 K	6 JIS	8.75	1.6142 (41 mm) BUD HEX	0.8268 (21 mm) SQUARE	325 ftlb. (440 N•m)	6.46	5.0	0.35	15º DC	Steel TOPY

^{*}O.D. Wrench Sizes

Figure 15.21.3

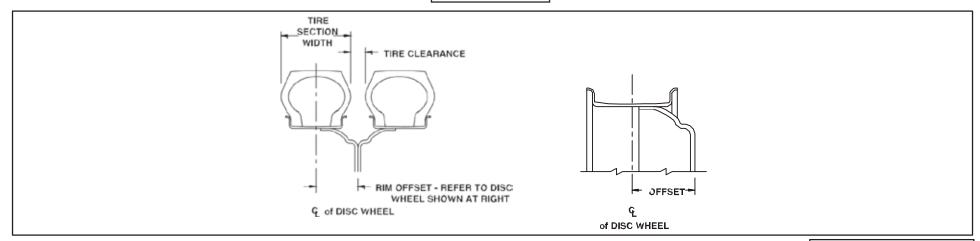
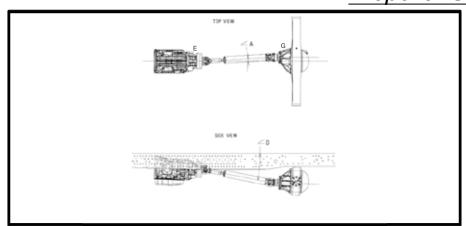



Figure 15.21.4

Note: Dimensions in inches

Revision: 11/30/2017

Propeller Shaft 5500XD

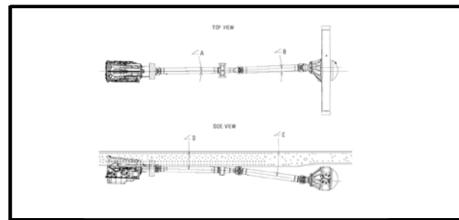


Figure 15.22.1

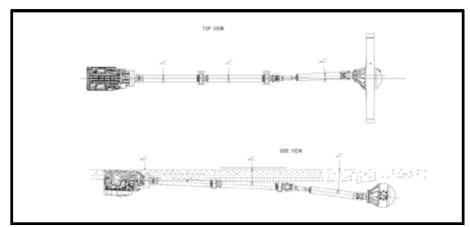


Figure 15.22.2

Figure 15.22.3

Wheel Base		Top View		Side View					
(in.)	∠A	∠B	∠C	∠D	∠E	∠F	Trans.	Rear Axle	
109	3.4°	-	-	11.4°	-	-	2.5°	2.5°	
132.5	0°	3.3°	-	5.3°	7.8°	-	2.5°	2.5°	
150	0°	3.2°	-	2.6°	8.1°	-	2.5°	2.5°	
176	0°	2.2°	-	2.1°	5.6°	-	2.5°	2.5°	
200	0°	0°	2.2°	2.1°	0.0°	5.6°	2.5°	2.5°	
212	0°	0°	2.2°	2.1°	0.0°	5.6°	2.5°	2.5°	

Note: 1. Angles provided in table are relative to the frame angle. Please take this into consideration for service measurements.

2. Driveline angles are based on the chassis curb weight which includes standard fuel but no driver, body, or payload.

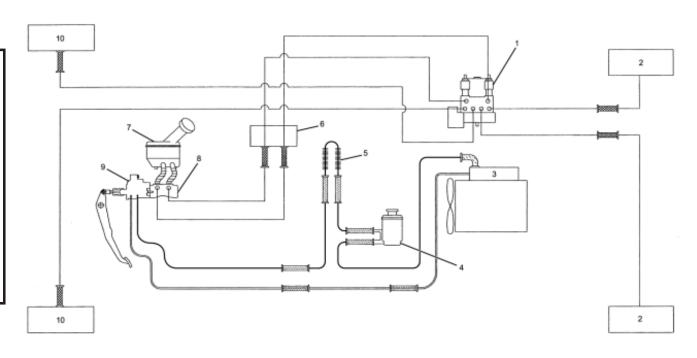
Automatic Transmission

Trans. Type		6 Auto	matic. Transmission			
Wheelbase	109	132.5	150	176	200	212
No. of Shafts	1	2	2	2	2	2
Shaft #1 O.D.	3.54	3.54	3.54	3.54	3.54	3.54
Thickness	0.126	0.126	0.126	0.126	0.126	0.126
Length	37.00	22.91	40.24	49.69	49.69	49.69
Туре	A	В	В	В	В	В
Shaft #2 O.D.	N/A	3.54	3.54	3.54	3.54	3.54
Thickness	N/A	0.126	0.126	0.126	0.126	0.126
Length	N/A	36.13	36.50	52.90	24.00	36.00
Туре	N/A	С	С	С	В	В
Shaft #3 O.D.	N/A	N/A	N/A	N/A	3.54	3.54
Thickness	N/A	N/A	N/A	N/A	0.126	0.126
Length	N/A	N/A	N/A	N/A	52.90	52.90
Туре	N/A	N/A	N/A	N/A	С	С

Figure 15.23.1

Туре	Description	Illustration
Туре А	1st shaft in 1-piece driveline	
Туре В	1st shaft in 2-piece driveline	
Туре С	2nd shaft in 2-piece driveline	

Note: Dimensions in inches

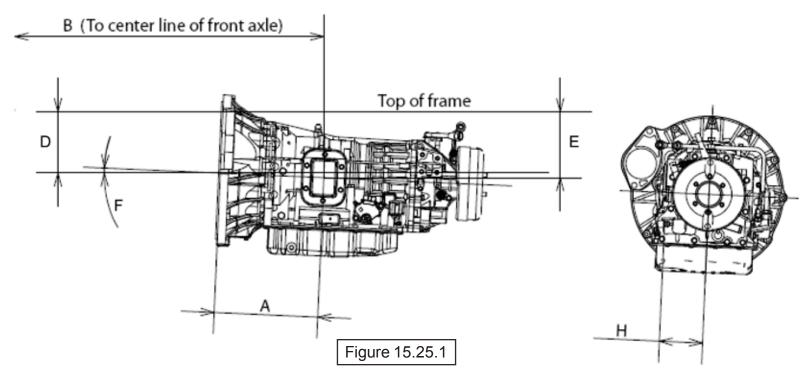

Revision: 11/30/2017

Brake System Diagram, Hydraulic Brake Booster

Please refer to Introduction Section of book for antilock system cautions and wheelbase modification requirements.

<u>Legend for 5000HD, 5500XD</u> Brake System

- (1) Electronic Hydraulic Control Unit (EHCU)
- (2) Rear Wheel Cylinder
- (3) Hydraulic Booster OilPump
- (4) Hydraulic Booster Reservoir
- (5) Cooler Pipe
- (6) Pipe Connector
- (7) Brake Fluid Reservoir
- (8) Master Cylinder
- (9) Hydraulic Booster Unit
- (10) Front Wheel Cylinder



	[20000000000000000000000000000000000000	[1111111]		[SMCCOME]	200000000	
l	BRAKE HOSE HIGH PRESSURE	BRAKE HOSE LOW PRESSURE	BRAKE PIPE	HYDRAULIC HOSE (SUPPLY)	HYDRAULIC HOSE (RETURN/SUCTION)	 HYDRAULIC PIPE (RETURN/SUCTION)

Figure 15.24.1

PTO Location, Drive Gear and Opening Information

AUTOMATIC TRANSMISSION

Trans.	Opening	Bolt	Α	В	С	D	Е	F	Н	PTO Drive Gear	Ratio of PTO Drv.	No. of	Pitch	Helix	Max. Output Torque
	Location	Pattern								Location	Gear Spd. to Eng. Spd.	Teeth		Angle	
Aisin (1)	Left	(Dr2)	12.35	36.89	0	7.85	7.31	2.5°	5.16	PTO Gear	1:1 with turbine	69	N/A	00	134 lbsft. @ 1,700 RPM

Figure 15.25.2

Opening Diagram

Aisin A460 Automatic Torque Converter Lock Up Function.

In either the Stationary Preset PTO Mode or Stationary Variable PTO Mode, when engine rpm exceeds 1200 RPM, the torque converter will lock up. The engine rpm can not be modified and the lockup function cannot be turned off. Please not that with PTO applications that operate around 1200 RPM, the transmission software holds the torque converter in lockup until engine speed falls below 1100 RPM

The lock up function will cancel if the transmission shift lever is moved from the park or neutral positions which will remove the trasmission from the stationary mode.

Additional PTO Functions

For certain applications the Automatic regeneration function can be inhibited (Example Airport Ground Support vehicles).

For certain applications the Automatic regeneration function can be enabled in the PTO stationary mode (Example Lawn care and carpet cleaning).

For certain applications the Automatic regeneration function can be enabled in the PTO mobile mode (Example Line painting).

Please refer to the PTO section of the BBG (section 17) for further details.

Figure 15.26.1

[₩] 15.27

Diesel Fuel Fill

Installation Instructions

- 1. Disconnect battery.
- 2. Loosen hose from the tie downs. Remove caps from plate on rail.
- 3. Install hoses onto the plate.
- 4. Extend hose out from the driver side of the rail to body rail.
- 5. The filler neck must be mounted to allow the fill plate bracket to be parallel to the frame horizontal.
- 6. Cover with protector wrap and secure with tie wraps.
- 7. Filler hose is set for 102 inches outside width body.
- 8. Filler neck (dimension A) must be between 6.85 inches and 8.5 inches above frame.
- 9. Secure the filler plate to the bottom of the body and check for leaks.
- 10. Ensure that fill hose does not sag, creating an area where the fuel could pool in the fill hose.
- 11. Reconnect battery.

Rear View Fuel Fill

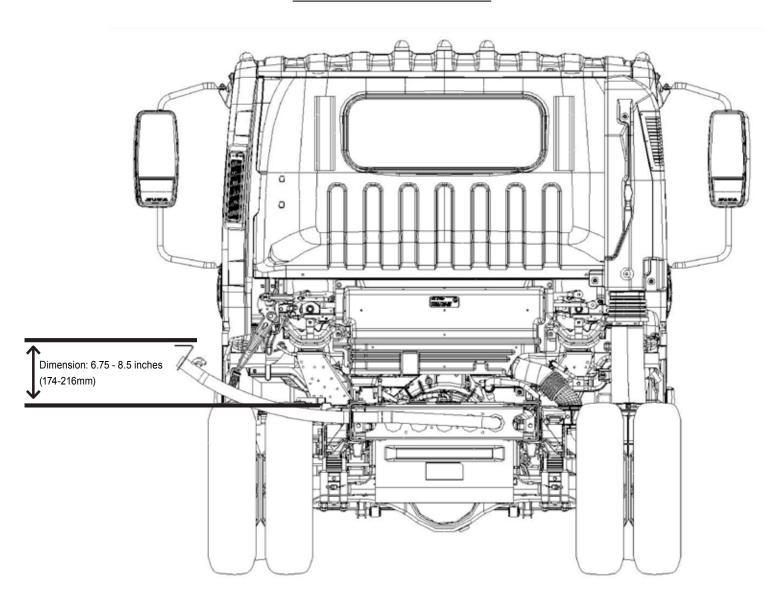
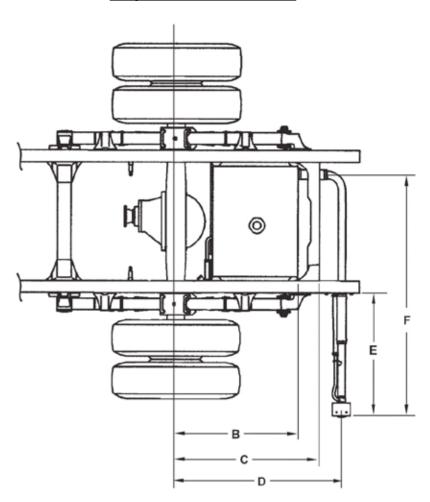



Figure 15.28.1

⁸ 15.29

Top View Fuel Fill

Dimensions:

B = 29.75 inches (756 mm)

C = 34.00 inches (863 mm)

D = 39.29 inches (998 mm)

E = 33.86 inches (860 mm)

F = 59.60 inches (1,514mm)

Figure 15.29.1

"A" Dimensions:

§ 15.30

Hose Modification for Various Width Bodies and Fuel Fill Vent Protection

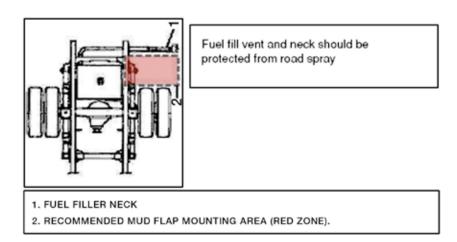
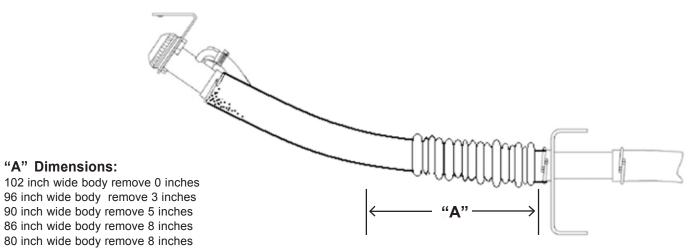



Figure 15.30.1

NOTE: Shorten hose by "A Dimension" based on chart at left.

Figure 15.30.2

Ultra Low Sulfur Diesel Label

Per EPA Title 40, Part 86, 86:007—35(c), The decal illustrated below must be installed on the vehicle. The decal is included in the fuel fill parts box.

> Ultra Low Sulfur Diesel Fuel Only

N' utiliser que du carburant diesel a teneur ultra-faible en soufre

INSTRUCTIONS FOR DECAL PLACEMENT:

- 1. The decal must be placed as close as possible to the fuel inlet and be clearly visible.
- 2. The decal should be placed above or to the side of the fuel cap to avoid corrosion by possible contact with fuel.
- 3. The decal may be placed on aerodynamic fairings, bodies, etc. as long as the decal is clearly visible and in close proximity to the fuel inlet.
- 4. For installed bodies that have a fuel door, the decal should be placed above or to the side of the fuel door.

Thoroughly clean the area of all grease, dirt, etc. before application of the decal. Apply the decal at room temperature, 65° to 75° F.

Figure 15.31.1

Through the Rail Fuel Fill Frame Hole

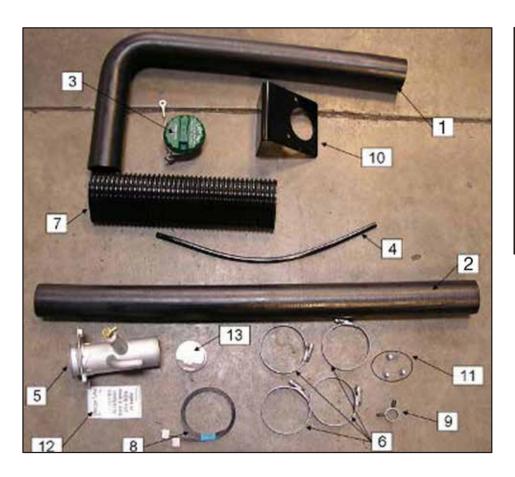



Figure 15.32.1

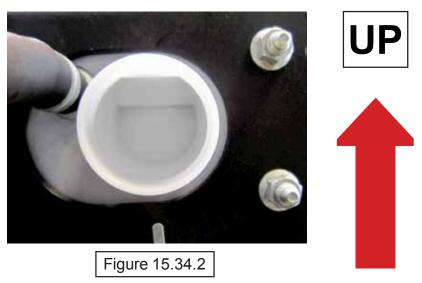
LCF-Diesel Fuel Filler Kit Instructions

Please review these instructions prior to installation of the fuel filler kit.

PARTS KIT: Fuel filler kit shown below is used for 14,500 lb and higher GVWR chassis 4500HD, 4500XD, 5500HD, 5500XD. Parts list is shown in **FIGURE 15.32.2**. Parts photos are shown in **FIGURE 15.32.1**.

	FUEL FILLER KIT		
ITEM #	PART NAME	PART#	QTY
1	HOSE: FUEL FILLER NECK	See Dealer	1
2	HOSE:FUELFILLER	See Dealer	1
3	CAP: FILLER	See Dealer	1
4	HOSE: ROLL-OVER VALVE	See Dealer	1
5	NECK ASM: FUEL FILLER	See Dealer	1
6	CLIP: JOINT	See Dealer	4
7	PROTECTOR: FILLER HOSE	See Dealer	1
8	CLIP: BAND, HOSE FIXING	See Dealer	2
9	CLIP: RUBBER, HOSE	See Dealer	1
10	BRACKET: FILLER NECK	See Dealer	1
11	SCREW:FILLERNECK	See Dealer	3
12	CAUTION PLATE	See Dealer	1
13	SHUTTER: FUEL TANK	See Dealer	1

Figure 15.33.2


Figure 15.33.1

Installation Instructions and Considerations:

The fuel tank shutter valve (13) is meant to improve fuel splash-back performance of the fuel system. This valve (13) is relocated on the fuel tank inlet to the inlet (outboard side) of the fuel filler neck bulkhead assemble that is bolted to the left hand frame rail as shown in **FIGURE 15.34.1**. This plastic valve snaps into place in the inlet of the frame mounted fuel pipe. The valve should be installed so that the plastic clip is at the top of the valve, so that the flap door opens up, as shown in **FIGURE 15.34.2**.

Figure 15.34.1

The fuel filler hose should be installed flush against the tank. The clamp should be installed between 1/16" and 3/8" from the tank. This is shown in **FIGURE 15.34.3** below.

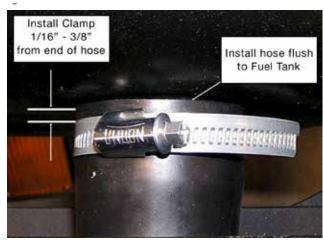
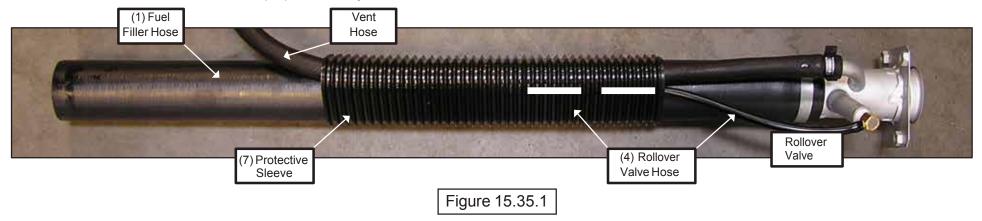



Figure 15.34.3

Roll-Over Valve Tubing

The roll-over valve has a hose attachment that will make this valve less sensitive to water intrusion. In order for the valve to work properly, it is critical that the hose be installed to the rollover valve. The proper assembly of the outer hose is shown in **FIGURE 15.35.1**.

Filler Neck Installation:

The fuel filler neck (5) must be installed with the proper orientation on the body. The neck should be installed with the roll-over valve pointing upward, with the bottom edge of the neck oriented parallel to the ground, plus 33 to minus 7 degrees. See **FIGURE 15.35.2**. for the proper orientation.

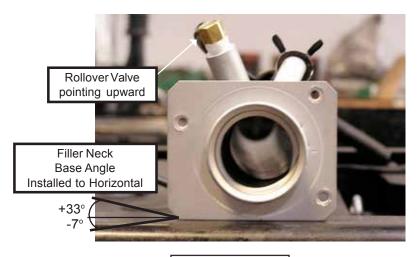
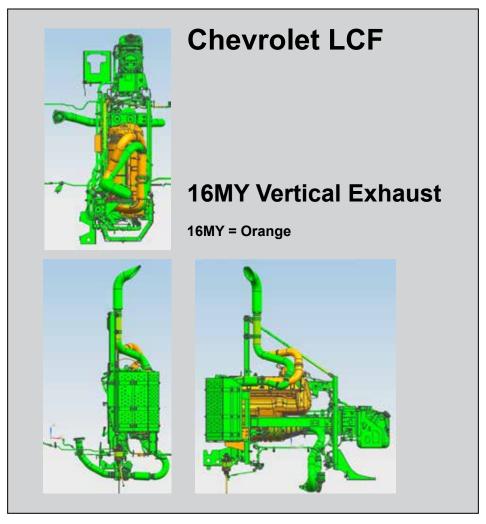



Figure 15.35.2

Vertical Exhaust LCF Diesel Only

- Available on 4500HD, 4500XD, 5500HD, 5500XD
- Vertical exhaust is available on 109, 132.5, 150, 176, 200, and 212 inch wheelbases
- · Option Code NPV
- Not available with 6.0L Gas Engine
- Available as a port installed option only
- Available with Automatic transmission only
- · Available with in rail fuel tank only
- Available with single cab only

Single Cab – Side View

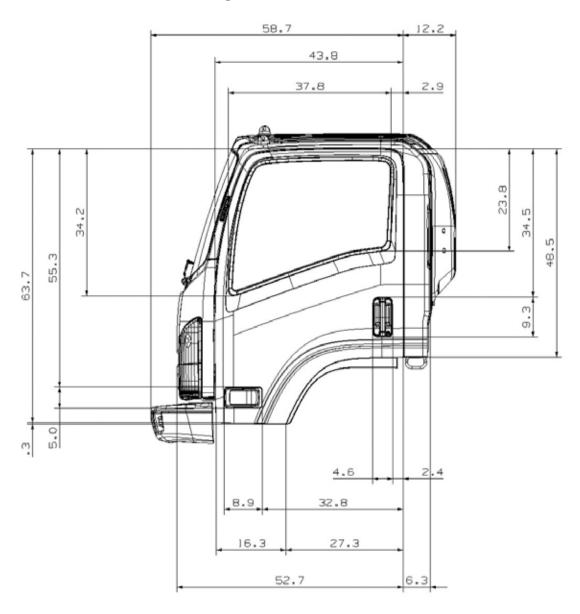


Figure 17.1.1

Dimensions in inches

Revision: 11/30/2017

Single Cab – Front View

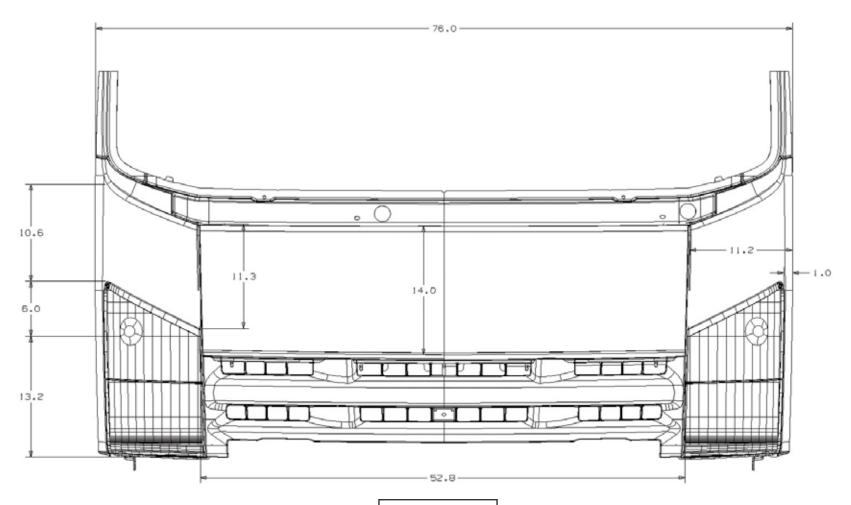
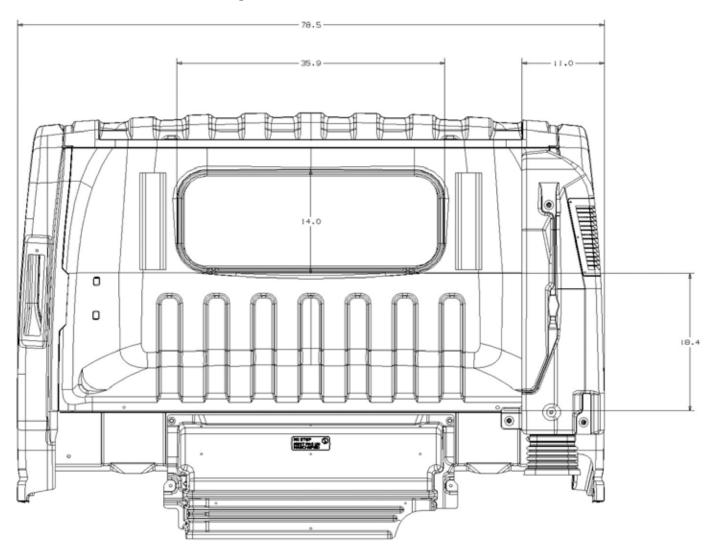



Figure 17.2.1

Single Cab – Rear View

Note:

Top of window to top of roof 7.64 inches
Top of window to cab top of roof lights 9.64 inches

Figure 17.3.1

<u>Crew Cab – Cab Side View</u>

Figure 17.4.1

Crew Cab – Front View

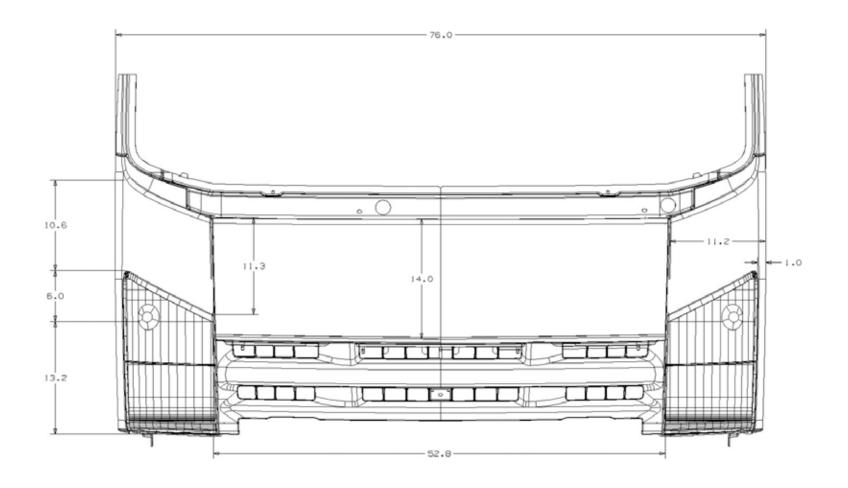


Figure 17.5.1

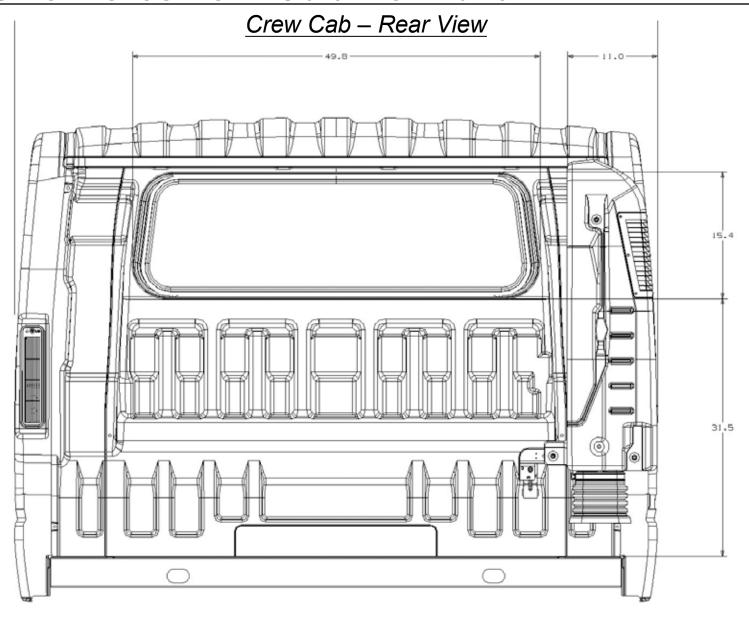


Figure 17.6.1

Single Cab - Front and Side View (Air Shield on Single Cab only)

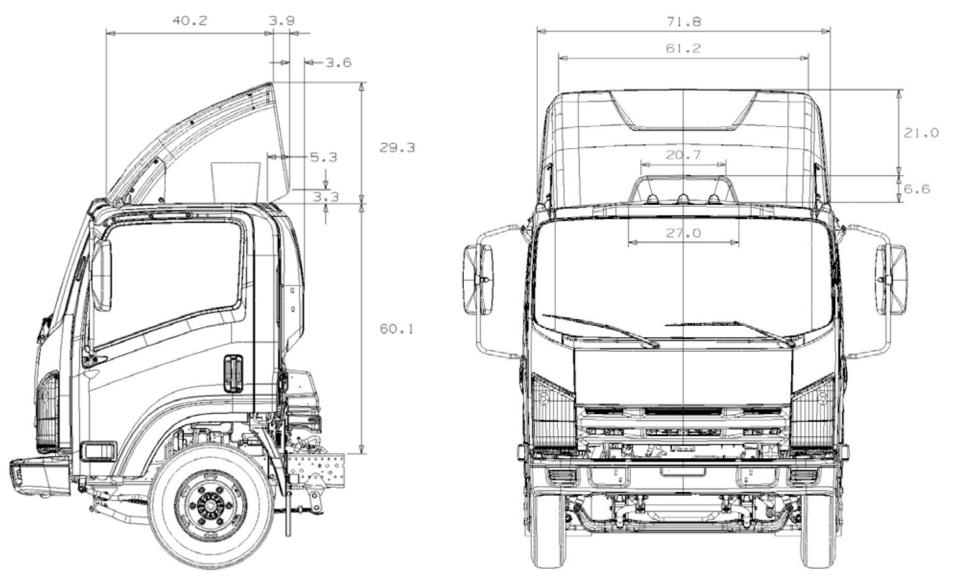
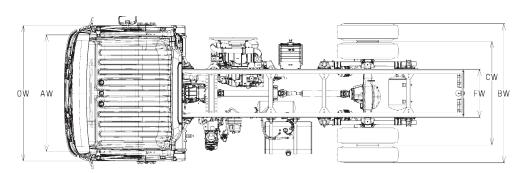


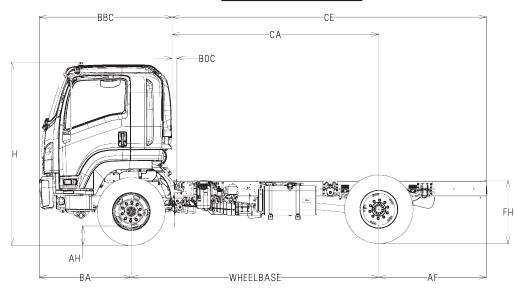
Figure 17.7.1


6500XD Diesel Specifications

Model	6500XD
GVWR	25,950 lbs.
WB	152 in., 170 in., 188 in., 200 in., 212 in., 224, 236 in., 248 in.
Engine	Isuzu 4-cylinder, in-line 4-cycle, turbocharged, intercooled, direct injection diesel.
Model/Displacement	4HK1-TC/317 CID (5.19 liters)
HP (Gross)	215 HP/2500 RPM
Torque (Gross)	520 lb ft torque/1650 RPM
Equipment	Dry element air cleaner with vertical intake; Cold weather starting device and an oil cooler. Engine oil level check
	switch and light. Engine warning system with audible
	warning for low oil pressure, high coolant temperature, and low coolant level. Engine cruise control function.
Transmission	Allison 2550 RDS series automatic transmission with lock up and PTO gear.
Steering	Integral power steering. Tilt and Telescoping steering column.
Front Axle	%BOB 4QJDFS &-12048 rated at 12,000 lbs.
Suspension	Semi-elliptical steel alloy tapered leaf springs with stabilizer bar and shock absorbers.
GAWR	12,000 lbs.
Rear Axle	%BOB 4QJDFS 190604 rated at 19,000 lbs.
Suspension	Semi-elliptical steel alloy multi-leaf springs and shock absorbers rated at 21,000 lbs.
GAWR	19,000 lbs.
Wheels	4UFFM 22.5 Y 8.25 IVC QJMPUFE 10 IPMF EJTD XIFFMT Painted white
Tires	11r22.5 14pr LRR (Low Rolling Resistance) tubeless steel belted radials, highway tread front and traction rear.
Brakes	Dual circuit air service brakes. Brake system is standard with an exhaust brake and 4 channel anti-lock brake system.
Fuel Tank	50 gal. or 100 gal. rectangular steel fuel tank mounted on left hand frame rail. Fuel water separator with indicator light.
Frame	Ladder type channel section straight frame rail 33.5 in wide through the total length of the framF: JFME TUSFOHUI 80,000 QTJ
Cab	All steel low cab forward, BBC 81.5 in, 45° mechanical tilt with torsion assist.
	TRICOT breathable cloth covered high back air dirvers seat with two fixed occupant
Equipment	passenger seats. Dual cab mounted exterior mirrors with convex mirror. 1ower windows and door locks, floor
	mats, tinted glass, AM/FM/ CD stereo radio with bluetooth.
Electrical	12 Volt, negative ground, dual Group 31 maintenance free batteries,
	750 CCA each with threaded posts 140 Amp alternator with integral regulator.

NOTE: These selected specifications are subject to change without notice.

18.2


Vehicle Weights, Dimensions and Ratings

In-Frame Tank 25,950 lb. GVWR Automatic Transmission Model Chassis Curb and Maximum Payload Weights

Model	WB	Unit	Front	Rear	Total	Payload	RPO
T71003	152	lb.	6527	3733	10260	15690	E99
T72003	170	lb.	6605	3782	10387	15563	EH8
T73003	188	lb.	6882	4007	10889	15061	EK8
T74003	200	lb.	6933	4039	10972	14978	EM2
T75003	212	lb.	6984	4072	11056	14894	EL5
T76003	224	lb.	7036	4105	11141	14809	EK6
T77003	236	lb.	7087	4138	11225	14725	EG7
T78003	248	lb.	7139	4170	11309	14641	ES5

Figure 18.3.1

Variable Chassis Dimensions:

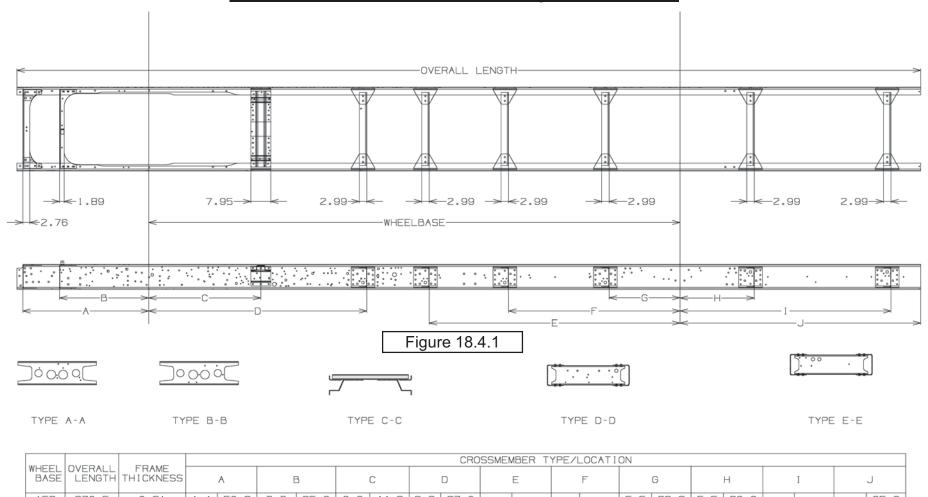
25,950 GVWR

Model	WB	CA	CE	AF	FL	OAL
T71003	152	127.0	192.9	65.9	270.5	274.4
T72003	170	145.0	220.0	75.0	297.6	301.5
T73003	188	163.0	247.0	84.1	324.6	328.5
T74003	200	175.0	264.9	90.0	342.5	346.4
T75003	212	187.0	283.1	96.1	360.6	364.6
T76003	224	199.0	301.0	102.0	378.5	382.5
T77003	236	211.0	319.1	108.1	396.7	400.6
T78003	248	223.0	337.0	114.0	414.6	418.5

Dimension Constants:

Code	Inches	Code	Inches
AH	12	BW	96
AW	81.1	CW	72.2
BA	56.5	FW	33.5
BBC	81.5	OH	112
BOC	3.0	OW	93.5
FH	42.5	OAL	96

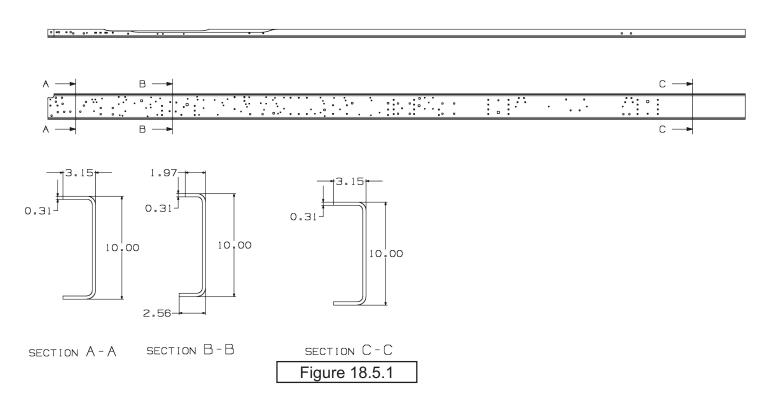
Technical Notes:


Figure 18.3.2

Chassis Curb Weight refects standard equipment and fuel, but no driver or payload.

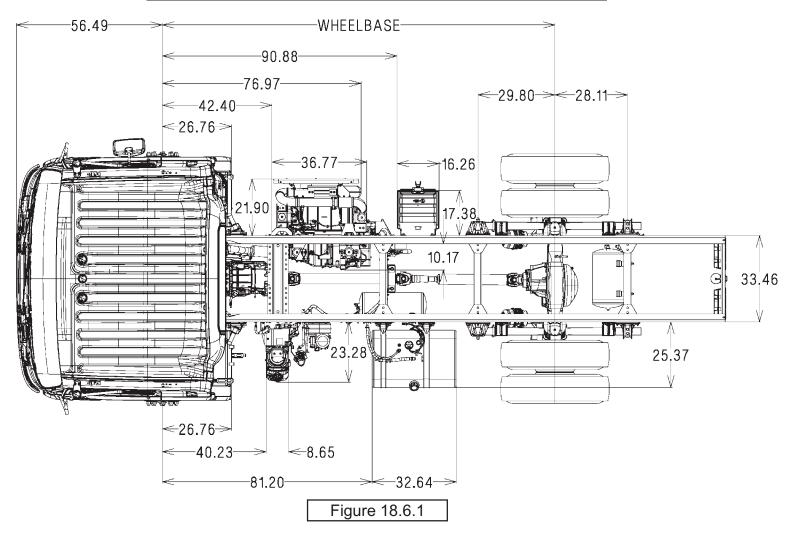
Maximum Payload Weight is the allowed maximum for equipment, body, payload and driver and is calculated by subtracting chassis curb weight from the GVWR.

18.3


Frame and Crossmember Specifications

		===								CRO	SSMEN	MBER T	YPE/L	_OCAT I	ON							
WHEEL	OVERALL LENGTH	FRAME THICKNESS		Α	Е	3		С		D		E		F		G		Н		I		J
152	270.5	0.31	A - A	50.2	B-B	35.6	C-C	44.8	D-D	87.0	-	-	-	-	E-E	28.3	E-E	29.6	-	-	-	65.9
170	297.6	0.31	A - A	50.2	B-B	35.6	C-C	44.8	D-D	87.0	E-E	58.1	-	-	E-E	28.3	E-E	29.6	E-E	63.1	-	75.0
188	324.6	0.31	A - A	50.2	B-B	35.6	C-C	44.8	D-D	87.0	E-E	76.1	-	-	E-E	28.3	E-E	29.6	E-E	72.1	-	84.0
200	342.5	0.31	A - A	50.2	В-В	35.6	C-C	44.8	D-D	87.0	E-E	81.2	-	-	E-E	28.3	E-E	29.6	E-E	78.1	-	90.0
212	360.6	0.31	A - A	50.2	В-В	35.6	C-C	44.8	D-D	87.0	E-E	100.1	E-E	68.4	E-E	28.3	E-E	29.6	E-E	84.2	-	96.1
224	378.5	0.31	A - A	50.2	B-B	35.6	C-C	44.8	D-D	87.0	E-E	112.1	E-E	68.4	E-E	28.3	E-E	29.6	E-E	90.1	-	102.0
236	396.7	0.31	A - A	50.2	В-В	35.6	C-C	44.8	D-D	87.0	E-E	124.1	E-E	83.1	E-E	28.3	E-E	29.6	E-E	96.2	-	108.1
248	414.6	0.31	A - A	50.2	В-В	35.6	C-C	44.8	D-D	87.0	E-E	136.1	E-E	83.1	E-E	28.3	E-E	29.6	E-E	102.1	-	114.0

Figure 18.4.2


Frame Chart

Wheelbase	Frame FL	Frame Thickness
152	270.5	0.315
170	297.6	0.315
188	324.6	0.315
200	342.5	0.315
212	360.6	0.315
224	378.5	0.315
236	396.7	0.315
248	414.6	0.315

Figure 18.5.2

6500XD Diesel Standard Cab - Top View

6500XD Diesel Standard Cab - Left Side View

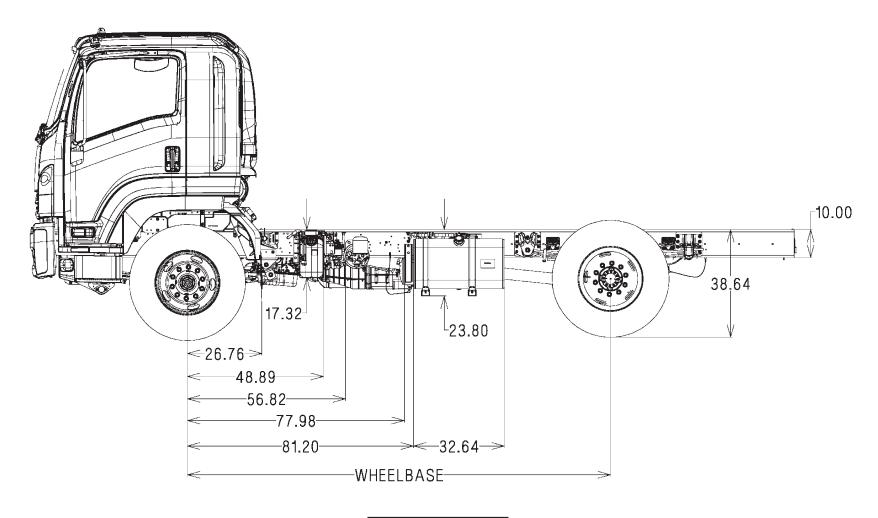


Figure 18.7.1

6500XD Diesel Standard Cab - Right Side View

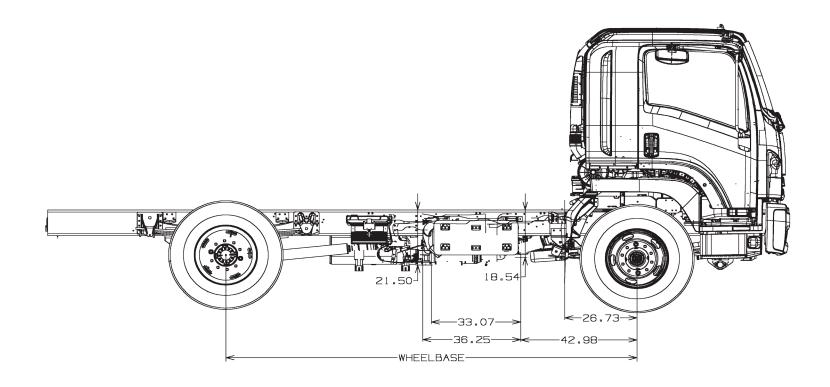
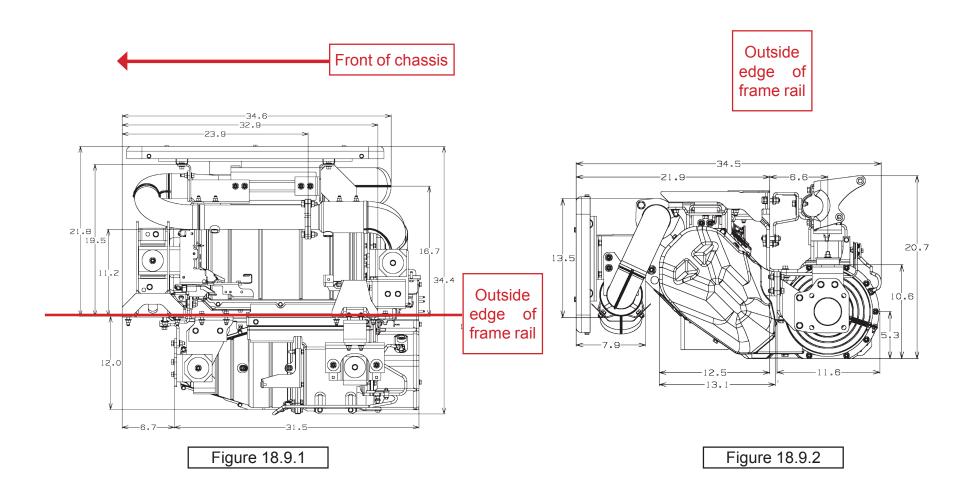



Figure 18.8.1

SCR / DPF 4HK1-TC — 5.2 Diesel

Fuel Tank Options

	Fuel Tank Information										
Model Code	GVWR (lb)	WB (in)	Tank Capacity (Gal)	Location LH Rail							
T71003		152	50	YES							
T72003		170	50	YES							
T73003		188	100	YES							
T74003		200	100	YES							
T75003	25,950	212	100	YES							
T76003		224	100	YES							
T77003		236	100	YES							
T78003		248	100	YES							

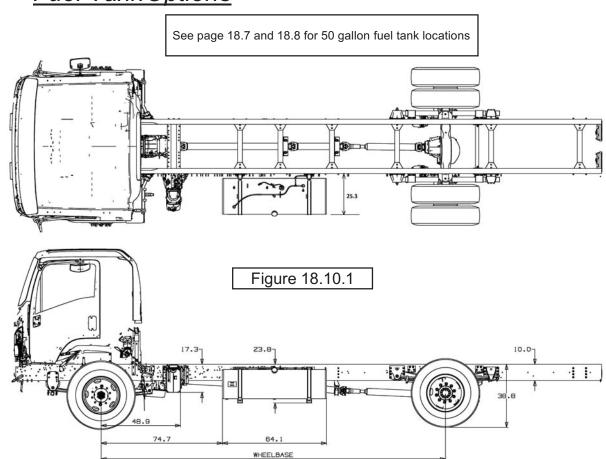


Figure 18.10.2

Cab Tilt

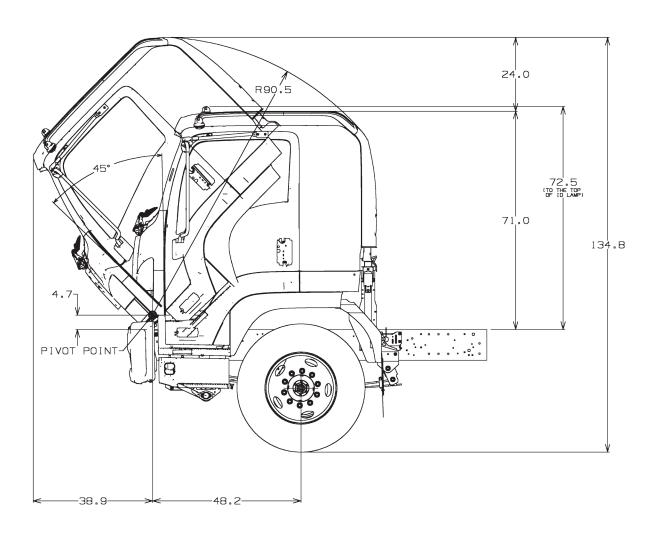


Figure 18.11.1

TURNING DIAMETERS

The 6500XD Diesel steering also features a 50.00 inside wheel cut angle.

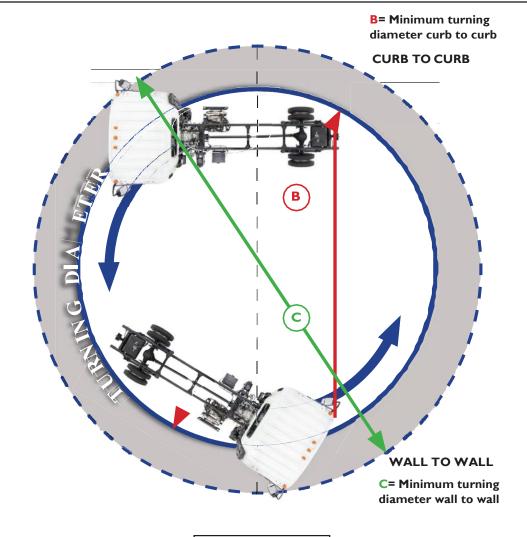
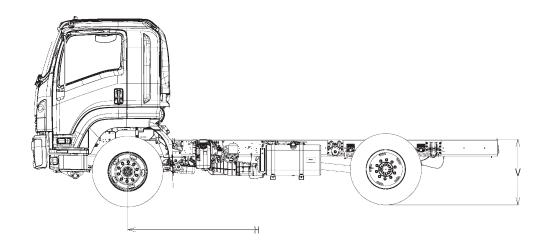



Figure 18.12.1

Measure		wheelbase										
		152	170	188	200	212	224	236	248			
Curb-to-Curb	ft	21.84	23.72	25.91	27.37	28.23	29.66	31.09	32.52			
Wall-to-Wall (bumper)	ft	24.34	26.27	28.47	29.93	30.86	32.30	33.73	35.16			
Wall-to-Wall (96" mirrors)	ft	24.32	26.24	28.43	29.89	30.79	32.23	33.66	35.09			
Wall-to-Wall (102" mirrors)	ft	24.52	26.43	28.62	30.08	30.98	32.42	33.85	35.28			

Horizo	Horizontal and Vertical CG of Chassis										
Model	WB	V	Н								
Code	(in)	(in)	(in)								
T71003	152		55.3								
T72003	170		61.9								
T73003	188		69.2								
T74003	200	39.37	73.6								
T75003	212	39.37	78.1								
T76003	224		82.5								
T77003	236		87.0								
T78003	248		91.5								

Figure 18.13.1

NOTE: The Final Manufacturer must ensure that the combined vertical center of gravity of the chassis, body, and available payload at full GVW does not exceed the maximum vertical center of gravity outlined in the Chevrolet Incomplete Vehicle Document (IVD).

The maximum dimensions for a body installed on the 6500XD chassis are 102 inches wide (outside width*) by 102 inches high (inside height).

* With 102 inches wide the mirror bracket option must be installed in place of standard mirror brackets.

Note: Dimensions in inches

6500XD Suspension Deflection Charts

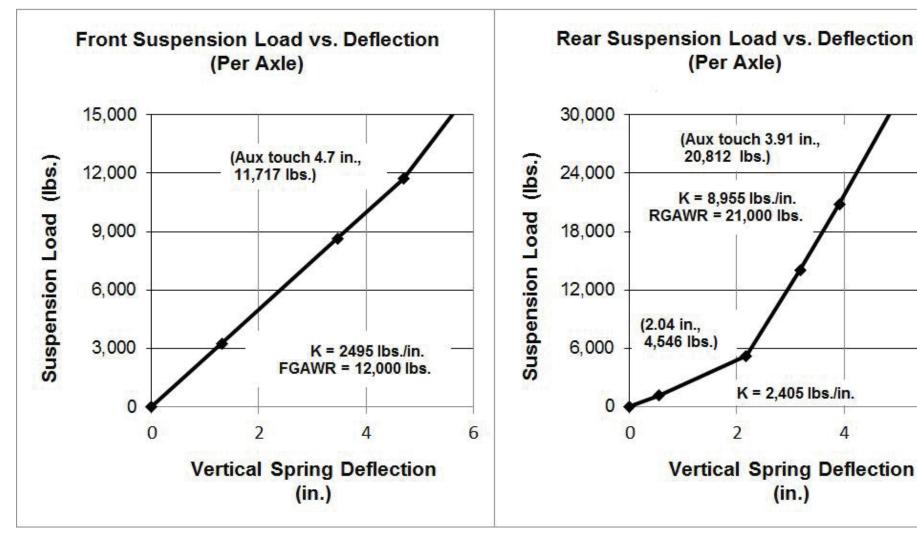


Figure 18.14.1

Figure 18.14.2

6

18.14

LCF DIESELSERIES – UNDERSTANDING DPF REGENERATION; MODES OF REGENERATION QUICK REFERENCE GUIDE

2016-2017MY CHEVROLET LCF DIESELS EQUIPPED WITH DIESEL PARTICULATE FILTER (DPF)

[₩] 18.15

Understanding SCR (Selective Catalyst Reduction)

INTRODUCTION TO SELECTIVE CATALYST REDUCTION (SCR) AND DIESEL EXHAUST FLUID (DEF)

INFORMATION

The Selective Catalyst Reduction (SCR) system reduces nitrogen oxide (NOx) emissions emitted from a diesel engine. The SCR system reduces NOx by adding (injecting) Diesel Exhaust Fluid (DEF) into the exhaust system and inducing a reaction converting NOx into water vapor and nitrogen. This reaction takes place without any driver involvement. In addition, as long as the DEF tank is regularly filled with good quality DEF and at a satisfactory level above empty, the driver may never notice the SCR system.

It is the driver's responsibility to keep a good supply of quality DEF in the DEF tank for the proper operation of the SCR system. The SCR system will continuously monitor itself and the NOx reduction performance for any condition that will reduce or stop this emission reduction. The information provided in the remainder of this bulletin will outline the SCR system functions, common characteristics of the SCR system, DEF quality requirements and indicator and warning lights should the SCR system detect an incorrect fluid or if the DEF level in the DEF tank becomes too low.

- SCR System Operation
- Adding DEF
- · DEF Low Level Warning System
- · DEF Quality and Storage
- DEF Safety
- Locating DEF

[₩] 18.16

Understanding SCR (Selective Catalyst Reduction)

SCR SYSTEM OPERATION AND THE DRIVER

The SCR system requires good quality DEF for proper operation. The system is equipped with various sensors to detect the proper fluid is added to the DEF tank. The driver's only responsibility is to add good quality DEF to the DEF tank as necessary. The DEF level gauge on the instrument cluster shows the amount of DEF remaining. In addition the Mutli Information Display (MID) will provide additional notice to encourage the driver to add DEF. In order to keep the SCR system operational and emissions compliant a warning system will activate when the DEF level becomes too low (see DEF Low Level Warning System). After starting the engine the SCR control module will pressurize the system and based on various sensor inputs begin to reduce NOx emissions. No driver action is necessary for the SCR system to function. After the engine is turned "OFF" the SCR control module will reduce system pressure and recover all DEF in the system piping back to the DEF tank. This action is taken as cold weather protection.

Note: Drivers may notice a buzzing noise from the driver side of the vehicle near the DEF tank a few moments after turning "OFF" the engine. This is a function of the SCR system and should be considered normal.

During cold weather seasons DEF may freeze in the DEF tank. Once the engine is started, engine coolant circulates through the DEF tank to thaw it when frozen and prevent it from freezing while the engine is running. The vehicle can be driven normally when DEF is frozen in the DEF tank.

ADDING DEF

Under normal conditions DEF can be added simply by removing the DEF tank fill cap and pouring in DEF. A few points to be aware of when transferring DEF from its original container to the DEF tank are:

- 1. Be sure the outside of the container is clean from any debris
- 2. If using a funnel or pump to transfer DEF, be sure to use equipment exclusively for DEF made from polyethylene resin or stainless steel.
- 3. Do not overfill the DEF tank

Take care not to spill DEF. When DEF dries it will leave a crystalline residue. This condition is normal. Wash, with water, or wipe away the residue to prevent it from entering the DEF tank. If DEF is spilled on the body or frame, it may cause the metal to rust, so wipe it off and then rinse it away with water.

Note: For cold weather climates (ambient temperatures below -11°C/12°F)

GM does not recommend parking the vehicle for long periods with the refill diesel exhaust fluid (DEF) warning light on in cold weather. The DEF low level warning system may not reset when DEF is added. Take the following actions to avoid this condition in cold weather.

[₩] 18.17

Understanding SCR (Selective Catalyst Reduction)

ADDING DEF - continued

- 1. Refill the DEF as soon as possible after parked vehicle.
- 2. Turn the engine control switch to the "ON" position from the "LOCK" position.
- 3. Wait for the warning buzzers and warning lights to turn off.
- 4. If the buzzer does not stop, return the engine control switch back to the "LOCK" position and add more DEF, and then start over the step (2) above.
- 5. Turn the engine control switch to the "LOCK" position. Turn the engine control switch to the "ON" position from the "LOCK" position.
- 6. Wait for the warning buzzers and warning lights to turn off.
- 7. If the buzzer does not stop, return the control switch back to the "LOCK" position and add more DEF, and then start over the step (2) above.
- 8. Turn the engine control switch to the "LOCK" position.

DEF LOW LEVEL WARNING SYSTEM

To avoid running out of DEF the SCR system will turn on warning and indicator lights and reduce engine power in progressive stages to encourage adding DEF. The following is a summary of the diesel exhaust fluid (DEF) low level warning lights, indicator lights and engine power reductions.

Continuing to drive for too long after these lights come on will eventually result in a severe vehicle speed limitation. These warning and indicator lights will go out

automatically and engine power will be restored to normal after the SCR system detects that the DEF tank is refilled with DEF.

Stage 1: When the remaining level of DEF becomes excessively low the DEF gauge will change color from green to amber. In addition, warning and indicator lights will come on as shown in the table and engine power will be reduced so the vehicle speed will not exceed 55 MPH (89 km/h).

Stage 2: If driving is continued without adding DEF (approximately 200 miles (320 km)) the DEF gauge, warning and indicator lights will begin blinking. Again, engine power will be reduced so the vehicle speed will not exceed 35 MPH (56 km/h).

Stage 3: If driving is continued until the DEF tank is empty, the DEF gauge will change color from amber to red and the warning and indicator lights will begin to blink faster. Engine power will still be reduced so the vehicle speed will not exceed 35 MPH (56 km/h). The vehicle speed will be limited to 5 MPH (8 km/h) either when the vehicle is stopped after driving further on (approximately 35 miles (56 km)) or when the engine is restarted.

Stage 4: The DEF gauge is red, the indicator light is blinking and the buzzer is beeping continuously indicates the vehicle speed is limited to 5 MPH (8 km/h).

[₩] 18.18

Understanding SCR (Selective Catalyst Reduction)

DEF QUALITY AND STORAGE

Diesel Exhaust Fluid is a urea-based chemical reactant designed specifically for use in SCR systems to reduce NOx emissions. The raw materials used to produce DEF include natural gas, coal or other petroleum products. DEF is prepared by combining high purity urea with deionized water to create a 32.5% solution. DEF and similar urea-based products are widely used today for a variety of agricultural and industrial needs. Isuzu DEF is API certified and meets ISO22241 specifications for purity and composition, while being:

- Non-toxic and non-polluting
- Non-flammable
- Stable and colorless
- Non-hazardous

DEF should be stored in an indoor place with good ventilation avoiding direct sunlight, if possible. Be sure containers are sealed properly to avoid contamination and evaporation. To maximize shelf life, ideal storage temperature is below 30°C/86°F and above -11°C/12°F to prevent freezing. If frozen DEF can be thawed and used without any concerns.

DEF SAFETY

Though it should be harmless for physical contact, there may be a rare case to induce inflammation depending on the body constitution, so make sure to take following actions.

- In the event that the fluid does come into contact with your skin, wash it off with water. Although it is rare, a person with sensitive skin may suffer from irritation. If you come into contact with DEF, flush the affected area with soap and/or water. If irritation or redness develops or persists, seek medical attention.
- If it is accidentally swallowed, drink 1- 2 glasses of water or milk and seek immediate medical attention.
- If it does come into contact with the eyes, immediately rinse it off with a large amount of water for at least 15 minutes, and then seek medical attention.

Customer Assistance in locating DEF DEF is available from all authorized GM dealers. In addition, the U.S. Department of Energy has created an on-line DEF locator that can be accessed at http://www.afdc.energy.gov/afdc/locator/def/. The American Petroleum Institute (API) also maintains a list of API-certified distributors of DEF on their web page at http://www.apidef.org/searchresults.asp.

[₩] 18.19

Understanding SCR (Selective Catalyst Reduction)

PREPARATION OF VEHICLES FOR STORAGE BEYOND 30 DAYS

In the event vehicles are to be stored for extended periods beyond 30 days, the following additional maintenance items are suggested:

NOTE: When vehicles are stored outside, particularly along coastal areas, paint and bright metal deterioration will be more rapid due to prevailing salt water atmosphere and high humidity. For this reason, it may be necessary to wash the vehicle and wax the chrome and stainless steel metal parts at least once a month.

NOTE: To prevent the possibility of a build-up of mildew, open the doors to air the vehicle out at least once a month depending upon climatic condition. If there is condensation, wipe the condensation dry with a clean cloth and air out the vehicle.

- A. "Block out" mechanical clutches by holding the clutch pedal partially depressed (approximately 1/2 way) with wooden blocks or bracing. This will prevent clutch plates from rusting to the flywheel and clutch pressure plate.
- B.Remove the windshield wiper arms and blades and store in the vehicle.

 In addition, the following procedures are to be carried out at 30-day intervals and instituted after the first 30 days of vehicle storage.
- 1) Check the battery water levels and specific gravity. If voltage is under 12.20 volts, recharge the battery.
- 2) Connect the battery ground cable, and start the engine. Operate the engine at fast idle until normal operating temperature is reached (be sure there is sufficient fuel in tank each vehicle is supplied with approximately 1.5 gallons of fuel. Do not let the tank run dry. While engine is warming up, perform Steps 3-7 below.
- 3) Shift the transmission lever to all positions while the engine is running.
- 4) Move the vehicle for a distance of at least 30 feet to lubricate the wheel bearings.

NOTE: The vehicle should be re-parked so that a different area of the tires is in contact with the ground to reduce the possibility of tire damage.

- 5) Turn the steering wheel lock-to-lock, while the vehicle is moving slowly.
- 6) Apply and release the service and parking brakes several times. (Do not apply the parking brake when the vehicle is moving)
- 7) Stop the engine.
- 8) Disconnect the battery ground cable.
- 9) Drain the brake air reservoirs (if appropriate) and close the drain cocks.

VEHICLES STORED BEYOND ONE YEAR

In the event vehicles are to be stored for extended periods beyond one year, the following additional maintenance is required:

1) Drain and refill Diesel Exhaust Fluid (DEF)

[₩] 18.20

Limited Slip Differential Fluid

Should it become necessary to add fluid to the rear axle of a chassis equipped with a limited slip differential please consult the Chevrolet Low Cab Forward Owners Manual for the appropriate selection of lubricants to be used.

Axle	Housing	Stamp
Ratio	Stand	180

Stand Axle	LSD Axle
SO	НО
C9	D9
S9	H9
C8	D8
S8	Н8
A7	B7
C7	D7
	Axle SO C9 S9 C8 S8 A7

Paint Code Chart

EXTERIOR PAINT CODE INFORMATION

GM Ordering Color Name Exterior	AKZO NOBEL CODE	DUPONT CODE	NEXA COLOR CODE	PPG CODE	SHERWIN WILLIAMS/ MARTIN SENOUR	SPIES HECKER CODE	STANDOX CODE	PANTONE (1)
White	FLNA40156	729	729	91508	729	729	729	7541C
NATE OF TAXABLE	5131440400	04.0	042	02024	040	04.2	040	1270
Wheatland Yellow	FLNA10182	812	812	83931	812	812	812	137C
Dark Woodland Green	FLNA60181	807	807	48339	807	807	807	3308C
Cardinal Red	ISU736	736	736	75097	736	736	736	202C
Dark Blue	ISU695	695	695	909649	695	695	695	655C
Black	ISU508	508	508	N/A	508	508	508	Black 6C

(1) The Pantone colors listed are the closest Pantone color numbers to the OEM paint colors and are given for reference only

Figure 19.1.1